【總結(jié)】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】第8課時(shí)二元一次不等式(組)與平面區(qū)域,提高數(shù)學(xué)建模的能力.,會(huì)作出二元一次不等式(組)表示的平面區(qū)域.(組)所表示的平面區(qū)域解決簡(jiǎn)單的實(shí)際問題.如圖,點(diǎn)P1(-1,0)與點(diǎn)P2(0,-1)都在直線上,都滿足x+y+1=0,點(diǎn)P3(0,0)與點(diǎn)P4(1,1)都在
2024-11-18 08:09
【總結(jié)】第4課時(shí)一元二次不等式及其解法的應(yīng)用...上一課時(shí)我們共同學(xué)習(xí)了一元二次不等式的解法,并能解簡(jiǎn)單的一元二次不等式,一元二次不等式及其解法是一種重要的數(shù)學(xué)工具,是集合、函數(shù)、不等式等知識(shí)的綜合交匯點(diǎn),地位重要,這一講我們將共同探究一元二次不等式及其解法的應(yīng)用.問題1穿針引線法正二次不可分解因
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】課題:基本不等式的證明(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用基本不等式求解函數(shù)最值問題.【課前預(yù)習(xí)】1.當(dāng)0??ab時(shí),比較baabbaabbaab???????????????22222,,,,,的大?。ㄟ\(yùn)用基本不等式及比較法)
2024-11-20 01:04
【總結(jié)】課題:基本不等式(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】理解算術(shù)平均數(shù)與幾何平均數(shù)的定義及它們的關(guān)系.探究并了解基本不等式的證明過程,會(huì)用各種方法證明基本不等式.理解基本不等式的意義,并掌握基本不等式中取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等.【課前預(yù)習(xí)】1.當(dāng)
【總結(jié)】課題:不等式專題復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】會(huì)運(yùn)用基本不等式解決一些問題.【課前預(yù)習(xí)】1、(1)函數(shù)2231xxy???的定義域?yàn)開________________;(2)比較大小:122?____________
2024-12-05 10:13
【總結(jié)】北師大版高中數(shù)學(xué)必修五第三章《不等式》渝水一中數(shù)學(xué)組渝水一中數(shù)學(xué)組簡(jiǎn)單線性規(guī)劃復(fù)習(xí)判斷二元一次不等式表示哪一側(cè)平面區(qū)域的方法Oxy11x+y-1=0x+y-10x+y-10
2025-07-18 13:54
【總結(jié)】北師大版高中數(shù)學(xué)必修五第三章《不等式》渝水一中數(shù)學(xué)組一元二次不等式的解法(1)商品促銷?現(xiàn)在有一家商店對(duì)某種成本價(jià)為650元的電視機(jī)有一個(gè)促銷活動(dòng):?買一臺(tái)電視機(jī),單價(jià)950元;?買兩臺(tái),單價(jià)是900元;?依次類推,每多買一臺(tái),單
2024-09-29 12:36
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
【總結(jié)】第二章解三角形知識(shí)點(diǎn)新課程標(biāo)準(zhǔn)的要求層次要求領(lǐng)域目標(biāo)要求正弦定理和余弦定理,掌握正弦定理、余弦定理、余弦定理的變形公式習(xí),體驗(yàn)數(shù)學(xué)探究活動(dòng)的過程,培養(yǎng)探索精神和創(chuàng)新意識(shí)“應(yīng)用舉例”,提高應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力和實(shí)際操作的能力,進(jìn)一步體會(huì)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值,進(jìn)
【總結(jié)】基本不等式的證明課時(shí)目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時(shí)取“=”號(hào)).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時(shí),等號(hào)成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定
2025-08-05 04:41