【總結(jié)】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
2025-11-09 08:48
【總結(jié)】:2baab??復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2
【總結(jié)】基本不等式【學習目標】ab?2ba?的證明方法,要求學生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導過程。.【學習重難點】理解利用基本不等式ab?2ba?求函數(shù)的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2025-11-14 12:48
【總結(jié)】第11課時:§基本不等式的證明(2)【三維目標】:一、知識與技能;;,求最值時注意一正二定三相等。;基本不等式在證明題和求最值方面的應用。二、過程與方法通過幾個例題的研究,進一步掌握基本不等式2abab??,并會用此定理求某些函數(shù)的最大、最小值。三、情感、
2025-11-11 00:26
【總結(jié)】(第一課時)導學案【課程標準要求】①探索并了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(小)值問題.【學習目標】①經(jīng)歷由幾何圖形抽象出重要不等式的過程,會用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關(guān)系及等號成立的條件;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過程,加深認識基本不等
2025-04-16 12:23
【總結(jié)】第7課時基本不等式的實際應用,并會用基本不等式來解題..今天我們來探究基本不等式在實際生活中的應用,我們先來看個實際例子:如圖,有一張單欄的豎向張貼的海報,它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問題1
2025-11-09 08:09
【總結(jié)】均值不等式的應用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當且僅當???
2024-12-08 20:20
【總結(jié)】第2課時不等式的性質(zhì)..建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設原住
2025-11-29 02:37
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-04-04 05:10
【總結(jié)】:學案(第一課時)一、學習目標基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【總結(jié)】課題:一元二次不等式(2)班級:姓名:學號:第學習小組【學習目標】掌握一元二次不等式的解法;進一步理解三個一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;會解一些簡單的含參數(shù)的不等式.【課前預習】1.如何解一元二次不等式02???cbxax與02???
2025-11-11 01:05
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2025-10-20 03:11
【總結(jié)】課題:一元二次不等式(3)班級:姓名:學號:第學習小組【學習目標】掌握一元二次不等式的解法;進一步理解一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;學會處理含參數(shù)的一元二次不等式恒成立問題.【課前預習】1.解不等式:(1)0624???xx;
【總結(jié)】課題:一元二次不等式的解法(1)班級:姓名:學號:第學習小組【學習目標】學習目標:1、通過函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。2、會解一元二次不等式?!菊n前預習】課前預習1.一元二次不等式和相應的二次函數(shù)是否有內(nèi)在的聯(lián)系?2.