【總結(jié)】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個圖中數(shù)學(xué)家大會的會標,你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當(dāng)且僅當(dāng)我們有一般地,對于任意實數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結(jié)】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結(jié)】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當(dāng)a、b∈R成立嗎?)
2024-11-03 19:19
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】第一篇:基本不等式說課 基本不等式 一、教材分析 本節(jié)課是人教版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。二元均值不等式。這是在學(xué)習(xí)了“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等...
2024-11-15 02:54
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計 基本不等式 一、教學(xué)設(shè)計理念: 注重學(xué)生自主、合作、探究學(xué)習(xí),、教學(xué)設(shè)計思路: 這節(jié)課的目標定位分為三個層面: 第一層面:知識與技能層面,①了解兩個正數(shù)的算術(shù)平均...
2024-11-14 13:44
【總結(jié)】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)
2025-03-24 03:55
【總結(jié)】基本不等式在求最值中的應(yīng)用與完善楊亞軍函數(shù)的最值是函數(shù)這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實際生活及生產(chǎn)實踐中的應(yīng)用。高考應(yīng)用題幾乎都與最值問題有關(guān),,才能更好地去解決實際應(yīng)用問題。一、基本不等式的內(nèi)容及使用要點1、二元基本不等式:①a,b∈R時,a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時“=”號成立);②a,b≥0時,a+b
2025-08-05 01:31
【總結(jié)】§3.4基本不等式:(一)教案咸寧高中:徐浩全◆內(nèi)容分析本節(jié)課是《數(shù)學(xué)必修(5)》第三章第四節(jié)基本不等式的內(nèi)容。在前幾節(jié)課剛剛學(xué)習(xí)了不等式的性質(zhì)、一元二次不等式、二元一次不等式(組)與線性規(guī)劃問題,這些內(nèi)容為本節(jié)課打下了堅實的基礎(chǔ);同時,基本不等式的學(xué)習(xí)為今后解決最值問題提供了新的方法,為不等式的證明提供了有力的幫助,在高中數(shù)學(xué)中有著重要的地位,是高考的重點內(nèi)容。本節(jié)內(nèi)容
2025-04-16 12:12
【總結(jié)】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【總結(jié)】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡記為“和定積最大”(2)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡
2025-07-23 12:30
【總結(jié)】基本不等式(第一課時)教學(xué)設(shè)計及反思?人教版《普通高中課程標準實驗教科書·數(shù)學(xué)(必修5)》中的“基本不等式”。下面把這節(jié)課的教學(xué)設(shè)計、教后反思記錄下來,愿與同行研討?!盎静坏仁健笔潜匦?的重點內(nèi)容,在課本封面上就體現(xiàn)出來了。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等式的進一步研究.在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是
2025-08-05 04:52
【總結(jié)】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實數(shù)、、滿足,則的最大值為▲.3、已知正實數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【總結(jié)】新課標人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點:?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2025-08-05 04:41