【總結(jié)】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》教學目標?推導并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2024-08-14 04:41
【總結(jié)】基本不等式說課稿 基本不等式是主要應用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【總結(jié)】第7課時基本不等式的實際應用,并會用基本不等式來解題..今天我們來探究基本不等式在實際生活中的應用,我們先來看個實際例子:如圖,有一張單欄的豎向張貼的海報,它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問題1
2024-11-18 08:09
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-08 20:20
【總結(jié)】基本不等式應用一.基本不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)
2025-03-24 03:55
【總結(jié)】基本不等式的應用課時目標;(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結(jié)】......《不等式》的說課稿各位領(lǐng)導、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學高中教材必修五第三章第一二三節(jié),我將從八個方面(教材、學情、教學模式、教學設(shè)計、板書、評價、開發(fā)、得失,出示ppt)說我對此課的思考和
2025-04-17 00:22
【總結(jié)】......基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】第一篇:基本不等式說課 基本不等式 一、教材分析 本節(jié)課是人教版高中數(shù)學必修5中第三章第4節(jié)的內(nèi)容。二元均值不等式。這是在學習了“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等...
2024-11-15 02:54
【總結(jié)】第一篇:不等式3(基本不等式應用與證明) 學習要求大成培訓教案(不等式3基本不等式證明與應用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2024-10-28 23:35
【總結(jié)】基本不等式學習目標?學習目標:理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學法指導:發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學習重點、難點:一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-11-23 11:40
【總結(jié)】第一篇:基本不等式教案 基本不等式 【教學目標】 1、掌握基本不等式,能正確應用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學對基本不等式應用的二個條件有進一步的...
2024-10-28 11:37
【總結(jié)】2abab??§:ICM2022會標趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實數(shù)a、b,我們有當且僅當a=b時,等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2024-08-13 15:14
【總結(jié)】(1)基本不等式(2)基本不等式的最大值與最小值對于任意實數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當且僅當x=y時等號成立22x+y≥xy2如果a,b都是正數(shù),那么,當且僅當a=b時,等號成立.a+b≥ab2,,
2024-08-03 16:08
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標準實驗教科書數(shù)學》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應用.本節(jié)內(nèi)容具有變通性、應用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03