【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時(shí),f′(x)0,x1時(shí)
2024-12-04 18:01
【總結(jié)】二、最大值與最小值問(wèn)題則其最值只能在極值點(diǎn)或端點(diǎn)處達(dá)到.求函數(shù)最值的方法:(1)求在內(nèi)的極值可疑點(diǎn)(2)最大值??max?M,)(af)(bf最小值機(jī)動(dòng)目錄上頁(yè)
2025-04-29 04:17
【總結(jié)】......初中幾何中線段和(差)的最值問(wèn)題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最??;(1)點(diǎn)A、B在直線m兩側(cè):
2025-03-24 12:33
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第10課時(shí)函數(shù)的最大值與最小值教學(xué)目標(biāo):;和步驟.教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過(guò)程:Ⅰ.問(wèn)題情境Ⅱ.建構(gòu)數(shù)學(xué):::
2024-11-19 17:30
【總結(jié)】《基本不等式》(第二課時(shí))如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)等式:復(fù)習(xí)等式:如果a,b∈R+,那么abba??2(當(dāng)且僅當(dāng)a=b時(shí),式中等號(hào)成立)注:(1)常用變形:①abba2??②
2024-10-19 14:39
【總結(jié)】......例談?dòng)没静坏仁角笞钪档乃拇蟛呗哉静坏仁剑ó?dāng)且僅當(dāng)時(shí)等號(hào)成立)是高中必修五《不等式》一章的重要內(nèi)容之一,也是高考常考的重要知識(shí)點(diǎn)。從本質(zhì)上看,基本不等式反映了兩個(gè)正數(shù)和與積之間的不等關(guān)系,所以在求取積的最值、和的最值當(dāng)中,基本不等式將會(huì)煥發(fā)出強(qiáng)大的生命力,它將會(huì)是解決最值問(wèn)題的強(qiáng)有力工具。本文將結(jié)合幾個(gè)實(shí)例談?wù)勥\(yùn)用基
2025-06-27 07:18
【總結(jié)】基本不等式應(yīng)用一:直接應(yīng)用求最值例1:求下列函數(shù)的值域(1)y=3x2+(2)y=x+解:(1)y=3x2+≥2=∴值域?yàn)閇,+∞)(2)當(dāng)x>0時(shí),y=x+≥2=2;當(dāng)x<0時(shí),y=x+=-(-x-)≤-2=-2∴值域?yàn)椋ǎ蓿?]∪[2,+∞)二:湊項(xiàng)例2:已知,求函數(shù)的最大值。解:因,所以首先要“調(diào)整”符號(hào),又不是常數(shù)
2025-07-20 11:31
【總結(jié)】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2025-08-04 15:14
【總結(jié)】初中幾何中線段和(差)的最值問(wèn)題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最??;(1)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):A、A’是關(guān)于直線m的對(duì)稱點(diǎn)。2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小。(1)兩個(gè)點(diǎn)都在直線
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問(wèn)題第2課時(shí)練習(xí)北師大版選修1-1一、選擇題1.將數(shù)8拆分為兩個(gè)非負(fù)數(shù)之和,使其立方之和為最小,則分法為()A.2和6B.4和4C.3和5D.以上都不對(duì)[答案]B[解析]設(shè)一個(gè)數(shù)為x,則另一個(gè)數(shù)為8-x,則y=x3
2024-11-28 14:03
【總結(jié)】算法分析與設(shè)計(jì)實(shí)驗(yàn)報(bào)告第一次實(shí)驗(yàn)姓名學(xué)號(hào)班級(jí)時(shí)間地點(diǎn)工訓(xùn)樓309實(shí)驗(yàn)名稱分治算法實(shí)驗(yàn)(用分治法查找數(shù)組元素的最大值和最小值)實(shí)驗(yàn)?zāi)康耐ㄟ^(guò)上機(jī)實(shí)驗(yàn),要求掌握分治算法的問(wèn)題描述、算法設(shè)計(jì)思想、程序設(shè)計(jì)。實(shí)驗(yàn)原理使用分治的算法,根據(jù)不同的輸入用例,能準(zhǔn)確的輸出用例中的最大值與最小值。并計(jì)算出程序運(yùn)行所需要的時(shí)間。程序
2025-04-16 23:42
【總結(jié)】最大值、最小值問(wèn)題(二)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.將長(zhǎng)度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯(cuò)解析設(shè)一段長(zhǎng)為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-03 00:13
【總結(jié)】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力.二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值.教學(xué)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”
2024-11-19 19:27
【總結(jié)】上頁(yè)下頁(yè)返回第1頁(yè)第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁(yè)退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)
2025-08-01 17:50
【總結(jié)】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說(shuō)f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)。極大
2024-11-18 08:47