【總結(jié)】單調(diào)性與最大(?。┲档谝徽n時函數(shù)單調(diào)性的概念問題提出德國有一位著名的心理學家艾賓浩斯,對人類的記憶牢固程度進行了有關(guān)研究.他經(jīng)過測試,得到了以下一些數(shù)據(jù):時間間隔t剛記憶完畢20分鐘后60分鐘后8-9小時后1天后2天后6天后
2025-07-18 14:14
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應(yīng)用(最大值與最小值)導學案(無答案)蘇教版選修1-1【學習目標】1、使學生掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲担?、使學生掌握用導數(shù)求函數(shù)的最大值與最小值的方法【課前預習】
2024-11-20 00:30
【總結(jié)】最大值、最小值問題學習目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應(yīng)用知識解決實際問題的能力.學習重點:求函數(shù)的最值及求實際問題的最值.學習難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”,即建立數(shù)學模型.學
2024-12-05 06:35
【總結(jié)】第三章導數(shù)及其應(yīng)用第10課時函數(shù)的最大值與最小值教學目標:;和步驟.教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學:::
2024-11-19 17:30
【總結(jié)】函數(shù)單調(diào)的概念?我們在函數(shù)的基本性質(zhì)中曾經(jīng)討論過函數(shù)的單調(diào)性問題,在此我們再次回顧一下函數(shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對于區(qū)間(a,b)內(nèi)的任意兩點x1,x2,滿足?(1)當x1x2時,恒有f(x1)?f(x2)(或f(x1)f(x2))
2025-08-15 20:29
【總結(jié)】......初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最?。唬?)點A、B在直線m兩側(cè):
2025-03-24 12:33
【總結(jié)】§(小)值(三)Thursday,February17,2022§(小)值(三)【教學重點】【教學目標】【教學難點】?理解增函數(shù)、減函數(shù)的概念?掌握判斷某些函數(shù)增減性的方法?步滲透數(shù)形結(jié)合的數(shù)學方法?函數(shù)單調(diào)
2025-01-20 02:58
【總結(jié)】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最?。唬?)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線
【總結(jié)】1.設(shè)函數(shù)。(1)當a=1時,求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導得:,定義域為(0,2)當a=1時,令當為增區(qū)間;當為減函數(shù)。當有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-03-24 07:03
【總結(jié)】鹿邑三高史琳畫出下列函數(shù)的草圖,并根據(jù)圖象解答下列問題:1說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性;2指出圖象的最高點或最低點,并說明它能體現(xiàn)函數(shù)的什么特征?(1)(2)32)(???xxf12)(2????xxxfxyooxy2
2024-11-12 01:38
【總結(jié)】南陽市八中數(shù)學組方國順復習導入本節(jié)關(guān)注:利用導數(shù)能否解決最值問題?如果能,怎么求最值.利用導數(shù)求極值的步驟?函數(shù)y=f(x)在區(qū)間[a,b]上的最大值點x0指的是:函數(shù)在這個區(qū)間上所有點的函數(shù)值都不超過f(x0).
2024-11-17 05:28
【總結(jié)】1.3.3函數(shù)的最大值與最小值(一)一、教學目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應(yīng)用知識解決實際問題的能力.二、教學重點:求函數(shù)的最值及求實際問題的最值.教學難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”
2024-11-19 19:27
【總結(jié)】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域為I,如果對于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量x1,x2當x1x2時,都有____________,那么就說函數(shù)f(x
2025-05-16 07:45
【總結(jié)】(?。┲蹬c導數(shù)課前自主學案求函數(shù)f(x)的極值首先解方程f′(x)=f′(x0)=0時,(1)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______;(2)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______.
2025-07-26 19:47
【總結(jié)】二、最大值與最小值問題則其最值只能在極值點或端點處達到.求函數(shù)最值的方法:(1)求在內(nèi)的極值可疑點(2)最大值??max?M,)(af)(bf最小值機動目錄上頁
2025-04-29 04:17