【總結(jié)】第一篇:立體幾何線面平行問(wèn)題 線線問(wèn)題及線面平行問(wèn)題 一、知識(shí)點(diǎn)11)相交——有且只有一個(gè)公共點(diǎn);(2)平行——在同一平面內(nèi),沒(méi)有公共點(diǎn);(3)異面——不在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn);.. :推...
2024-11-09 12:02
【總結(jié)】第一篇:立體幾何證明格式示范 教材P58練習(xí)2答案:(注意規(guī)范格式) 證明:連接B1D1 üüM,N分別是A1B1和A1D1中點(diǎn)TMN是DA1B1D1中位線TMN//B1D1üTMN//EF?y...
2024-10-14 07:24
【總結(jié)】第一篇:立體幾何證明已經(jīng)修改 F 1、如圖,在五面體ABCDEF中,F(xiàn)A^平面 DABC,DA//DB//C AF=AB=BC=FE=F^,EAB為,ECAD的M中點(diǎn),1AD2(1)求異面直線...
2024-10-14 08:53
【總結(jié)】第一篇:立體幾何的證明策略 立體幾何的證明策略: 幾何法證明 證明平行:3,2,11、線線平行:公理四,10頁(yè) 線面平行的性質(zhì)定理,課本20頁(yè)面面平行的性質(zhì)定理,36頁(yè) 2、線面平行:線面平...
2024-11-12 18:00
【總結(jié)】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2024-11-12 13:02
【總結(jié)】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學(xué)分析 1、本章節(jié)在整個(gè)教材體系中的地位和作用 本章教材是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)之一,通過(guò)研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面...
2024-11-15 06:00
【總結(jié)】空間幾何體空間幾何體的結(jié)構(gòu)柱、錐、臺(tái)、球的結(jié)構(gòu)特征簡(jiǎn)單幾何體的結(jié)構(gòu)特征三視圖柱、錐、臺(tái)、球的三視圖簡(jiǎn)單幾何體的三視圖直觀圖斜二測(cè)畫法平面圖形空間幾何體中心投影柱、錐、臺(tái)、球的表面積與體積平行投影畫圖識(shí)圖柱錐臺(tái)球圓錐圓臺(tái)
2025-01-14 00:33
【總結(jié)】立體幾何??甲C明題匯總考點(diǎn):線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;(2)平面平面??键c(diǎn):線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點(diǎn),求證:平面??键c(diǎn):線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【總結(jié)】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).②能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-16 12:13
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2024-08-02 12:10
【總結(jié)】立體幾何專題復(fù)習(xí)一、【知識(shí)總結(jié)】基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長(zhǎng)方體底面為正方形正四棱柱側(cè)棱與底面邊長(zhǎng)相等正方體
【總結(jié)】精品資源立體幾何復(fù)習(xí)易做易錯(cuò)題選如皋市教育局教研室一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點(diǎn),則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯(cuò)因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點(diǎn)
【總結(jié)】立體幾何選填題一、選擇題1.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A.B.C.D.2.設(shè),是兩個(gè)不同的平面,,是兩條不同的直線,且,()A.若,則B.若,則C.若,則D.若,則3.如下圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是
2024-08-14 10:01
【總結(jié)】立體幾何二面角,在長(zhǎng)方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點(diǎn).證明1、1C、F、?四點(diǎn)共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52