【總結】精品資源1.在平行六面體OABC---DEFG中(如圖),側面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設a是常數(shù)且0a1,P是EB上的點且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當a為何值時,有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【總結】立體幾何基礎題題庫二(有詳細答案)361.有一個三棱錐和一個四棱錐,棱長都相等,將它們一個側面重疊后,還有幾個暴露面?解析:有5個暴露面.如圖所示,過V作VS′∥AB,則四邊形S′ABV為平行四邊形,有∠S′VA=∠VAB=60°,從而ΔS′VA為等邊三角形,同理ΔS′VD也是等邊三角形,從而ΔS′AD也是等邊三角形,得到以ΔVAD為底,以S′與S重合.這
2024-10-04 16:00
【總結】高一數(shù)學立體幾何基礎題題庫二361.有一個三棱錐和一個四棱錐,棱長都相等,將它們一個側面重疊后,還有幾個暴露面?解析:有5個暴露面.如圖所示,過V作VS′∥AB,則四邊形S′ABV為平行四邊形,有∠S′VA=∠VAB=60°,從而ΔS′VA為等邊三角形,同理ΔS′VD也是等邊三角形,從而ΔS′AD也是等邊三角形,得到以ΔVAD為底,以S′與S重合.這表明ΔVA
2025-01-14 04:16
【總結】立體幾何??甲C明題匯總考點:線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;(2)平面平面??键c:線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點,求證:平面。考點:線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【總結】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【總結】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側面△SAB的面積.【分析】(1)由梯形ABCD,設BC=a,則CD=a,AB=2a,運用
2025-07-24 12:10
【總結】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關鍵在于找出平面內的一條直線
2025-07-18 00:17
【總結】第一篇:文科立體幾何證明 立體幾何證明題常見題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD^底面ABCD,PD=DC=1,E是PC的中 點,作EF^PB交PB于點F. ...
2024-10-26 17:25
【總結】第一篇:高中立體幾何 高中立體幾何的學習 高中立體幾何的學習主要在于培養(yǎng)空間抽象能力的基礎上,發(fā)展學生的邏輯思維能力和空間想象能力。立體幾何是中學數(shù)學的一個難點,學生普遍反映“幾何比代數(shù)難學”。但...
2024-11-15 06:58
【總結】立體幾何專題復習一、【知識總結】基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側棱與底面邊長相等正方體
【總結】精品資源立體幾何復習易做易錯題選如皋市教育局教研室一、選擇題:1.(石莊中學)設ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點,則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯因:學生把向量看為直線。2.(石莊中學)在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點
【總結】立體幾何二面角,在長方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點.證明1、1C、F、?四點共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52
【總結】常規(guī)幾何圖形的立體幾何問題1.如圖,在長方體中,點在棱的延長線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結】立體幾何垂直關系專題高考中立體幾何解答題中垂直關系的基本題型是:證明空間線面垂直需注意以下幾點:①由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證題思路。②立體幾何論證題的解答中,利用題設條件的性質適當添加輔助線(或面或輔助體)是解題的常用方法之一。③明確何時應用判定定理,何時應用性質定理,用定理時要先申明條件再由定理得出相應結論。④三垂線定理及其逆定理在高考題中
2025-03-25 06:43
【總結】立體幾何證明平行專題訓練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點E、F分別為棱AB、PD的中點.求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使得D