【總結】1空間向量運算的坐標表示北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結】(一)教學要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會運用上述知識解決立體幾何中有關的簡單問題.教學重點:空間直線、平面的向量參數(shù)方程及線段中點的向量公式.教學過程:一、復習引入1.回顧平面向量向量知識:平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【總結】第二章一、選擇題1.平面α的一個法向量為n1=(4,3,0),平面β的一個法向量為n2=(0,-3,4),則平面α與平面β夾角的余弦值為()A.-925B.925C.725D.以上都不對[答案]B[解析]cos〈n1,n2〉=n1·n2|n1||n
2024-11-30 22:16
【總結】第二章第2課時一、選擇題1.設P(-5,1,-2),A(4,2,-1),若OP→=AB→,則點B應為()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)[答案]A[解析]∵OP→=AB→=OB→-OA→,
2024-12-03 00:16
【總結】課題:空間向量基本定理學習目標:知識與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學生類比、聯(lián)想、維數(shù)轉換的思想方法和空間想象能力。情感態(tài)度與價值觀:創(chuàng)設適當?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學生極大的學習興趣,加強數(shù)學與生活實踐的聯(lián)系。學
2024-11-18 18:59
【總結】立體幾何-平行與垂直練習題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點,求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
2025-04-04 05:14
【總結】1共線向量與共面向量北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習在立方體AC1中,點E是面A’C’的中心,求下列各式中
2024-11-18 00:48
【總結】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標原點長為單位長度,如圖建立空間直角坐標系,則各點坐標為(Ⅰ)證明:因由題設知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50
【總結】空間向量基本定理課程目標學習脈絡1.了解空間向量基本定理及其意義,會在簡單問題中選用空間三個不共面的向量作為基底表示其他向量.2.使學生體會從平面到空間的過程,進一步培養(yǎng)學生對空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個不共面的向量,a是空間任一
2024-11-16 23:22
【總結】1北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2024-11-18 13:29
【總結】第二章§2理解教材新知把握熱點考向應用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準確命中目標,要考慮風速、溫度等因素.其中風速對射擊的精準度影響最大.如某人向正北100m遠處的目標射擊,風速為西風1m/s.
2024-11-17 19:02
【總結】課題空間向量的運算(一)學習目標:知識與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題.過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看
【總結】課題:空間向量的運算(二)學習目標:知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
【總結】第一課時:§立體幾何中的向量方法(一)教學要求:向量運算在幾何證明與計算中的應用.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題.教學重點:向量運算在幾何證明與計算中的應用.教學難點:向量運算在幾何證明與計算中的應用教學過程:一、復習引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2024-11-30 04:03
【總結】高中新課標數(shù)學選修(2-1)《空間向量與立體幾何》測試題一、選擇題1.空間的一個基底??,,abc所確定平面的個數(shù)為()A.1個B.2個C.3個D.4個以上答案:2.已知(121)A?,,關于面xOy的對稱點為B,而B關于x軸的對稱點為C,則BC?(
2024-11-15 13:15