【總結(jié)】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【總結(jié)】a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,則p·q=()A.-1B.1C.0D.-2解析:選=a-b=(1,0,-1),q=a+2b-c=(0,3,1),∴p·q
2024-12-05 06:40
【總結(jié)】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
【總結(jié)】F1F2F3aC'B'A'D'DABC空間向量及其線性運(yùn)算教學(xué)目標(biāo)1.運(yùn)用類比方法,經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運(yùn)算及其性質(zhì);3.理解空間向量共線的充要條件重點(diǎn)難點(diǎn)教
2024-11-20 00:30
【總結(jié)】第二章第1課時(shí)一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個(gè)向量p總可
2024-12-03 00:16
【總結(jié)】第二章第2課時(shí)一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【總結(jié)】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標(biāo)學(xué)習(xí)脈絡(luò)1.經(jīng)歷從平面向量到空間向量的推廣過程.2.會(huì)說出空間向量有關(guān)概念的含義.3.能指出直線的方向向量和平面的法向量.4.會(huì)用直線的方向向量和直線上一點(diǎn)確定直線,會(huì)用法向量和點(diǎn)確定平面.一二一、向
2024-11-16 23:22
【總結(jié)】課題:空間向量基本定理學(xué)習(xí)目標(biāo):知識(shí)與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學(xué)生類比、聯(lián)想、維數(shù)轉(zhuǎn)換的思想方法和空間想象能力。情感態(tài)度與價(jià)值觀:創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學(xué)生極大的學(xué)習(xí)興趣,加強(qiáng)數(shù)學(xué)與生活實(shí)踐的聯(lián)系。學(xué)
2024-11-18 18:59
【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【總結(jié)】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
【總結(jié)】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【總結(jié)】第二章§3&理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識(shí)點(diǎn)一知識(shí)點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三3.1&空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理學(xué)生小李參
2024-11-18 08:08
【總結(jié)】空間向量的正交分解及其坐標(biāo)表示一、空間直角坐標(biāo)系單位正交基底:如果空間的一個(gè)基底的三個(gè)基向量互相垂直,且長都為1,則這個(gè)基底叫做單位正交基底,常用來I,j,k表示空間直角坐標(biāo)系:在空間選定一點(diǎn)O和一個(gè)單位正交基底i、j、k。以點(diǎn)O為原點(diǎn),分別以i、j、
2024-11-18 07:54
【總結(jié)】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對(duì)空間任意兩個(gè)向量
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40