【導(dǎo)讀】時(shí),的夾角在什么范圍內(nèi)?線段的中點(diǎn)坐標(biāo)和長度;坐標(biāo)滿足的條件。例2如圖,在正方體中,,求與所成的角的余弦值。立空間直角坐標(biāo)系,則?向量的長度公式與兩點(diǎn)間的距離公式;
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-17 13:01
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個(gè)向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【總結(jié)】第二章第2課時(shí)一、選擇題1.設(shè)P(-5,1,-2),A(4,2,-1),若OP→=AB→,則點(diǎn)B應(yīng)為()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)[答案]A[解析]∵OP→=AB→=OB→-OA→,
2024-12-03 00:16
【總結(jié)】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中
2024-11-18 00:48
【總結(jié)】空間向量基本定理課程目標(biāo)學(xué)習(xí)脈絡(luò)1.了解空間向量基本定理及其意義,會(huì)在簡單問題中選用空間三個(gè)不共面的向量作為基底表示其他向量.2.使學(xué)生體會(huì)從平面到空間的過程,進(jìn)一步培養(yǎng)學(xué)生對空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個(gè)不共面的向量,a是空間任一
2024-11-16 23:22
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 11:25
【總結(jié)】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【總結(jié)】a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,則p·q=()A.-1B.1C.0D.-2解析:選=a-b=(1,0,-1),q=a+2b-c=(0,3,1),∴p·q
2024-12-05 06:40
【總結(jié)】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
【總結(jié)】F1F2F3aC'B'A'D'DABC空間向量及其線性運(yùn)算教學(xué)目標(biāo)1.運(yùn)用類比方法,經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運(yùn)算及其性質(zhì);3.理解空間向量共線的充要條件重點(diǎn)難點(diǎn)教
2024-11-20 00:30
【總結(jié)】第二章第1課時(shí)一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個(gè)向量p總可
【總結(jié)】第二章第2課時(shí)一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【總結(jié)】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標(biāo)學(xué)習(xí)脈絡(luò)1.經(jīng)歷從平面向量到空間向量的推廣過程.2.會(huì)說出空間向量有關(guān)概念的含義.3.能指出直線的方向向量和平面的法向量.4.會(huì)用直線的方向向量和直線上一點(diǎn)確定直線,會(huì)用法向量和點(diǎn)確定平面.一二一、向
【總結(jié)】課題:空間向量基本定理學(xué)習(xí)目標(biāo):知識(shí)與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學(xué)生類比、聯(lián)想、維數(shù)轉(zhuǎn)換的思想方法和空間想象能力。情感態(tài)度與價(jià)值觀:創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學(xué)生極大的學(xué)習(xí)興趣,加強(qiáng)數(shù)學(xué)與生活實(shí)踐的聯(lián)系。學(xué)
2024-11-18 18:59
【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49