【導讀】1.運用類比方法,經(jīng)歷向量及其運算由平面向空間推廣的過程;做共線向量或平行向量.a?的有向線段所在的直線可能是同一直。的充要條件是存在實數(shù)λ,使a?的直線,那么對于任意一點O,點P. 叫做直線l的方向向。中,M是1BB的中點,別是//,BDDB的中點,設kOKjOJiOI???,,,試用向量kji,,表示OE和OF
【總結】1空間向量運算的坐標表示北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2025-11-08 15:04
【總結】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2025-11-11 03:14
【總結】數(shù)乘運算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對空間任意兩個向量
2025-11-09 12:14
【總結】1北師大版高中數(shù)學選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2025-11-09 00:48
【總結】高中蘇教選修(2-1)空間向量的應用測試題一、選擇題1.已知向量(235)??,,a與向量1532????????,,b平行,則??()A.23B.92C.92?D.23?答案:C2.已知ABC,,三點的坐標分別為(413)(25
2025-11-26 09:20
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學空間向量的數(shù)量積課后知能檢測蘇教版選修2-1一、填空題1.下列結論中正確的序號是________.①a·b=a·c(a≠0)?b=c;②a·b=0?a=0或b=0;③(a·b)·c=a
2025-11-25 20:01
【總結】§3.空間向量的正交分解及其坐標表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構成空間一個基底.假設a+b,a-b,c共面,則存在x,
2025-11-29 01:49
【總結】直線的方向向量與平面的法向量一、學習目標1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量。教學重點:直線的方向向量和平面的法向量教學難點:求平面的法向量二、課前自學平面坐標系中用直線的傾斜角、斜率來刻畫直線平行與垂直的位置關系。如何用向量來描述空間的兩條直線、直線
2025-11-11 00:29
【總結】第3章——空間向量的數(shù)量積[學習目標],掌握兩個向量的數(shù)量積的概念、性質和計算方法及運算規(guī)律.,會用它解決立體幾何中一些簡單的問題.1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接
2025-11-09 08:08
【總結】第3章——空間向量及其運算空間向量及其線性運算[學習目標],幾何表示法、字母表示法...1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]觀察正方體中過同一個頂點的
【總結】第3章——空間向量的應用直線的方向向量與平面的法向量[學習目標]..1預習導學挑戰(zhàn)自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接],它們乊間有何關系?答:相互平行.?
【總結】第3章——空間線面關系的判定[學習目標]、線面、面面的垂直和平行關系.、面位置關系的一些定理(包括三垂線定理)..1預習導學挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓練,體驗成功[知識鏈接]
2025-11-08 19:02
【總結】第二章§2理解教材新知把握熱點考向應用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準確命中目標,要考慮風速、溫度等因素.其中風速對射擊的精準度影響最大.如某人向正北100m遠處的目標射擊,風速為西風1m/s.
【總結】解及其坐標表示lαOP例1在平面內的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
【總結】課題:空間向量的運算(二)學習目標:知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
2025-11-09 18:59