【總結(jié)】第三章空間向量與立體幾何1、坐標(biāo)運算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【總結(jié)】第三章質(zhì)量評估檢測時間:120分鐘滿分:150分一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.若A,B,C,D為空間不同的四點,則下列各式為零向量的是()①AB→+2BC→+2CD→+DC→;②2AB→+
2024-12-03 11:33
【總結(jié)】第二章檢測題A時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.在空間中,已知動點P(x,y,z)滿足z=0,則動點P的軌跡是()A.平面B.直線C.不是平面,也不是直線D.
2024-12-03 00:16
【總結(jié)】廣州市育才中學(xué)2021-09學(xué)年高二數(shù)學(xué)選修1-1單元檢測題導(dǎo)數(shù)及其應(yīng)用(A組:適合A,B類學(xué)校使用)時間:120分鐘滿分:150分命題人:李葉秀鄧軍民一、選擇題(每小題5分,共50分)1、設(shè))(xf是可導(dǎo)函數(shù),且?????????)(,2)()2(lim0000xfxxfxxfx則(
2024-12-01 09:33
【總結(jié)】廣州市育才中學(xué)2021-09學(xué)年高二數(shù)學(xué)選修1-1單元檢測題導(dǎo)數(shù)及其應(yīng)用(B組:適合C類及以下學(xué)校使用)時間:120分鐘滿分:150分命題人:李葉秀鄧軍民一、選擇題(每小題5分,共50分)1、已知函數(shù)f(x)=ax2+c,且(1)f?=2,則a的值為()A.0
2024-11-30 13:02
【總結(jié)】第二章一、選擇題1.下列說法中正確的是()A.任意兩個空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的模可以比較大小[答案]D[解析]任意兩個空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2024-11-30 11:35
【總結(jié)】北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》扶風(fēng)縣法門高中姚連省第一課時平面向量知識復(fù)習(xí)一、教學(xué)目標(biāo):復(fù)習(xí)平面向量的基礎(chǔ)知識,為學(xué)習(xí)空間向量作準(zhǔn)備二、教學(xué)重點:平面向量的基礎(chǔ)知識。教學(xué)難點:運用向量知識解決具體問題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、基本概念
2024-12-08 09:07
【總結(jié)】第一課時:§立體幾何中的向量方法(一)教學(xué)要求:向量運算在幾何證明與計算中的應(yīng)用.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題.教學(xué)重點:向量運算在幾何證明與計算中的應(yīng)用.教學(xué)難點:向量運算在幾何證明與計算中的應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2024-11-30 04:03
【總結(jié)】空間“綜合”問題向量法解立體幾何問題的優(yōu)點:1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運算就可以解決問題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
2024-11-18 12:14
【總結(jié)】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2024-11-17 12:02
【總結(jié)】ZPZ空間“距離”問題一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量
【總結(jié)】平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來體會向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實數(shù)對共面的充要條件是存在與向量不共線,則向量如果兩個向量byaxp
【總結(jié)】第二章檢測題B時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列說法中不正確的是()A.平面α的法向量垂直于與平面α共面的所有向量B.一個平面的所有法向量互相平行C.如果兩個平面的法向量垂直,那么這兩個
2024-12-03 00:15
【總結(jié)】空間“角度”問題法門高中姚連省一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何
2024-11-18 13:29
【總結(jié)】ABCA1B1C1Myz3.2立體幾何中的向量方法——平行與垂直(1)【學(xué)習(xí)目標(biāo)】1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量;3.能用向量方法證明空間線線、線面、面面的平行與垂直關(guān)系.【自主學(xué)習(xí)】1、點的位置向量:2、直線的方向向量:3、平面的
2024-11-19 23:25