【總結(jié)】為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(lnx)'
2024-11-18 08:46
【總結(jié)】2020/12/241導(dǎo)數(shù)在實際生活中的應(yīng)用2020/12/2421、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的
2024-11-17 23:31
【總結(jié)】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
【總結(jié)】12???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號有什么變化地相應(yīng)特點此點附近的圖象有什么是多少呢在此點的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過程形象解釋
2024-11-18 15:24
【總結(jié)】圖1導(dǎo)數(shù)在實際生活的實際應(yīng)用同步練習(xí)1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當(dāng)其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
2024-12-05 09:29
【總結(jié)】1.3.2函數(shù)的極值與導(dǎo)數(shù)(1)一、教學(xué)目標(biāo):理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進(jìn)一步體驗導(dǎo)數(shù)的作用.二、教學(xué)重點:求函數(shù)的極值.教學(xué)難點:嚴(yán)格套用求極值的步驟.三、教學(xué)過程:(一)函數(shù)的極值與導(dǎo)數(shù)的關(guān)系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【總結(jié)】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實際問題的過程中體會建模思想.2.感受導(dǎo)數(shù)知識在解決實際問題中的作
2024-11-18 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運用導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【總結(jié)】導(dǎo)數(shù)及其應(yīng)用高考題第1題.設(shè)函數(shù)2()ln(23)fxxx???(Ⅰ)討論()fx的單調(diào)性;(Ⅱ)求()fx在區(qū)間3144???????,的最大值和最小值.答案:解:()fx的定義域為32?????????,.(Ⅰ)224622(21)(1)()223
2024-12-02 10:13
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【總結(jié)】12??????????????????.,.,,,,.,,.,,00000值在相應(yīng)區(qū)間上所有函數(shù)數(shù)于函大不小那么值點小的最大是函數(shù)如果哪個值最小哪個值最大上某個區(qū)間我們往往更關(guān)心函數(shù)在數(shù)性質(zhì)時函在解決實際問題或研究但是的值更小更大附近找不到比那么在值點小的極大
【總結(jié)】1.2.3簡單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問題簡單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過中間變量的引入理解
【總結(jié)】1.5.3微積分基本定理【學(xué)習(xí)要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學(xué)法指導(dǎo)】通過探究變速直線運動物體的速度與位移的關(guān)系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計算定積分的一種有效方法.本
【總結(jié)】本課時欄目開關(guān)填一填研一研練一練1.3.1單調(diào)性【學(xué)習(xí)要求】1.結(jié)合實例,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式.3.會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次).【學(xué)法指導(dǎo)】結(jié)合
2024-11-18 08:08
【總結(jié)】本課時欄目開關(guān)填一填研一研練一練1.1.1平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學(xué)法指導(dǎo)】平均變化率可以刻畫函數(shù)值在某個范圍內(nèi)變化的快慢程度,理解