【總結】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【總結】極值點教學目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內容分析:對極大、極小值概念的理
2025-11-11 00:26
【總結】一輪復習學案§應用(1)姓名☆復習目標:1.理解可導函數(shù)的單調性與其導數(shù)的關系;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側異號)。?基礎熱身:1.3()31fxaxx???對于?
2024-12-08 01:48
【總結】§學習目標;奎屯王新敞新疆一、預習與反饋(預習教材P22~P26,找出疑惑之處)復習1:以前,我們用定義來判斷函數(shù)的單調性.對于任意的兩個數(shù)x1,x2∈I,且當x1<x2時,都有,那么函數(shù)f(x)就是區(qū)間I上的函數(shù).復習2:'C?
2024-11-30 14:35
【總結】1導數(shù)的運算.2常數(shù)函數(shù)與冪函數(shù)的導數(shù)3???,,.,,如何求它的導數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運動物點處的切線的斜率在某導數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當?shù)膶?shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2025-11-09 01:21
【總結】復數(shù)的概念教學目標:1.理解復數(shù)的有關概念以及符號表示;2.掌握復數(shù)的代數(shù)形式和幾何表示法,理解復平面、實軸、虛軸等概念的意義掌握復數(shù)集C與復平面內所有點成一一對應;3.理解共軛復數(shù)的概念,了解共軛復數(shù)的幾個簡單性質.教學重點:復數(shù)的有關概念,復數(shù)的表示和共軛復數(shù)的概念;教學難點:復數(shù)概念的理解,復數(shù)與復平面上點一一
2025-11-10 22:43
【總結】山東省泰安市肥城市第三中學高中數(shù)學導數(shù)學案1新人教A版選修2-2學習內容學習指導即時感悟【學習目標】1.掌握導數(shù)的概念,導數(shù)公式及計算,導數(shù)在函數(shù)中的應用。能夠用導數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應用?!緦W習重點】導數(shù)在研究函數(shù)中的應用?!緦W習難點】導數(shù)在研究函
2025-11-10 17:30
【總結】1.2.2基本初等函數(shù)的導數(shù)及導數(shù)的運算法則(1)一、教學目標:掌握八個函數(shù)求導法則及導數(shù)的運算法則并能簡單運用.二、教學重點:應用八個函數(shù)導數(shù)求復雜函數(shù)的導數(shù)..教學難點:商求導法則的理解與應用.三、教學過程:(一)新課1.P14面基本初等函數(shù)的導數(shù)公式(見教材)2.導數(shù)運算法則:(1).和(或差)的導數(shù)
2025-11-11 03:14
【總結】山東省泰安市肥城市第三中學高中數(shù)學導數(shù)的綜合應用學案新人教A版選修2-2學習內容學習指導即時感悟【學習目標】通過學習進一步理解導數(shù)的意義,會進行導數(shù)的計算,掌握導數(shù)的應用:求切線方程,判斷函數(shù)的單調性,求函數(shù)的極值與最值。【學習重點】導數(shù)的應用【學習難點】導數(shù)的應用學習方向一、回顧復習:
【總結】§變化率問題教學目標1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點:平均變化率的概念.教學過程:一.創(chuàng)設情景[為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著
2024-12-08 01:49
【總結】人民教育出版社普通高中課程標準實驗教科書選修2-2第一章導數(shù)DAOSHU五教學過程微積分的創(chuàng)立是數(shù)學發(fā)展中的里程碑,導數(shù)是微積分的核心概念之一.在本節(jié)課中學生將經(jīng)歷由平均變化率到瞬時變化率刻畫現(xiàn)實問題的過程,理解導數(shù)的含義,體會導數(shù)的內涵,感受導數(shù)在解決數(shù)學問題
2025-11-08 20:07
【總結】雙基達標?限時20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對答案D2.已知函數(shù)f(x)在(a,b)上可導
2024-12-03 00:14
【總結】第2課時函數(shù)的極值,會從幾何直觀理解函數(shù)的極值與導數(shù)的關系,并會靈活應用..、參數(shù)取值范圍、判斷方程的根的個數(shù)等問題.若函數(shù)f(x)的定義域為區(qū)間(a,b),導數(shù)f'(x)在(a,b)內的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內的極小值點有幾個嗎?問題
2025-11-10 23:14
【總結】§學習目標1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細分和無窮累積的思維方法.預習與反饋(預習教材P42~P47,找出疑惑之處)1.用化歸為計算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【總結】導數(shù)的概念與運算第1題.()fx?是31()213fxxx???的導函數(shù),則(1)f??的值是答案:3第2題.已知二次函數(shù)2()fxaxbxc???的導數(shù)為()fx?,(0)0f??,對于任意實數(shù)x,有()0fx≥,則(1)(0)ff?的最小值為
2024-11-30 14:39