【總結】導數(shù)的計算(3)復習導函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導數(shù)公式表11.(),'()0;2.(),'();3.()s
2024-11-18 12:13
【總結】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2024-08-03 22:48
【總結】12???,??th,.,at,,規(guī)律導數(shù)的符號有什么變化地相應特點此點附近的圖象有什么是多少呢在此點的導數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調遞增??0th'?單調遞減??0ah'??圖.,值的過程形象解釋
2024-11-18 15:24
【總結】《定積分的簡單應用--在物理中的應用》教學目標?掌握定積分物理中的應用。?教學重點:?定積分原理的實際應用定積分在物理中的應用定積分目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點與難點本節(jié)復習指導I.變力沿
2024-11-17 19:44
【總結】《定積分的簡單應用--在力學中的應用》教學目標?掌握定積分力學中的應用。?教學重點:?定積分原理的實際應用一知識點歸納:例1二例題講解:例1變式例2例3例4例4例5例6媒1C三練習:求
【總結】一輪復習學案§應用(1)姓名☆復習目標:1.理解可導函數(shù)的單調性與其導數(shù)的關系;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側異號)。?基礎熱身:1.3()31fxaxx???對于?
2024-12-08 01:48
【總結】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【總結】復數(shù)的概念一、學法建議:1、本節(jié)內容概念較多,在理解的基礎上要牢記實數(shù)、虛數(shù)、純虛數(shù)與復數(shù)的關系,特別要明確:實數(shù)也是復數(shù),要把打復數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實數(shù),而不是純虛數(shù),初學復數(shù)時最易在這里出錯。2、復數(shù)z=a+bi(a、是由它實部和虛
2024-11-19 20:23
【總結】極大值與極小值課時目標(小)值的概念.,了解函數(shù)在某點取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其他點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側________,右側________.類似地,函數(shù)y=f(
2024-12-05 09:29
【總結】利用導數(shù)判斷函數(shù)的單調性【教學目標】了解并掌握函數(shù)單調性的定義以及導數(shù)與函數(shù)單調性的關系,會利用導數(shù)求函數(shù)的單調區(qū)間,會利用導數(shù)畫出函數(shù)的大致圖像?!窘虒W重點】利用導數(shù)求單調區(qū)間【教學難點】導數(shù)與單調性的關系一、課前預習(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調性?1、__________2、__
2024-12-03 11:30
【總結】山東省泰安市肥城市第三中學高中數(shù)學教案定積分及其應用學案新人教A版選修2-2學習內容學習指導即時感悟學習目標:1.了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念。2.了解微積分基本定理。3.加強數(shù)形結合,化歸思想的應用。學習重點:定積分的幾何意義、基本性質、微積分基本定理
2024-11-19 17:30
【總結】復數(shù)的概念教學目標:1.理解復數(shù)的有關概念以及符號表示;2.掌握復數(shù)的代數(shù)形式和幾何表示法,理解復平面、實軸、虛軸等概念的意義掌握復數(shù)集C與復平面內所有點成一一對應;3.理解共軛復數(shù)的概念,了解共軛復數(shù)的幾個簡單性質.教學重點:復數(shù)的有關概念,復數(shù)的表示和共軛復數(shù)的概念;教學難點:復數(shù)概念的理解,復數(shù)與復平面上點一一
2024-11-19 22:43
【總結】§導數(shù)在實際生活中的應用目的要求:(1)鞏固函數(shù)的極值與最值(2)利用導數(shù)解決應用題中有關最值問題例1.在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
【總結】定義:函數(shù)y=f(x)在x=x0處的瞬時變化率是0000()()li.mlimxxfxxfxyxx???????????,|)(00xxyxf???或00000()()()limlim.xxfxxfxyfxxx????
【總結】導數(shù)的概念2121f(x)-f(x)y=xx-x11f(x+x)-f(x)=x復習割線AB的斜率3、在高臺跳水運動中,運動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關系h(t)=++10.
2024-11-17 12:02