【摘要】2020/12/24的應(yīng)用導(dǎo)數(shù)公式表及數(shù)學(xué)軟件2020/12/24.,表導(dǎo)數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?020/12/24式基本初等函數(shù)的導(dǎo)數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則
2024-11-17 05:49
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.2導(dǎo)數(shù)的概念導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解瞬時(shí)速度、瞬時(shí)變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;3.會(huì)求函數(shù)在某點(diǎn)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P4-6)探究一:瞬時(shí)速度:?jiǎn)栴}1:我們把物體在某一時(shí)刻的
2024-11-19 20:35
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時(shí)間掙到2萬元,乙用5個(gè)月時(shí)間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時(shí)間t的函數(shù),則下面兩個(gè)圖象哪一個(gè)可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第2課時(shí)利用導(dǎo)數(shù)研究函數(shù)的極值課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.已知函數(shù)f(x)在點(diǎn)x0處連續(xù),下列命題中正確的是()A.導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)B.如果在點(diǎn)x0附近的左側(cè)f′(x)0,右側(cè)f′(x)0,那么f(x0)是極小
2024-12-03 11:28
【摘要】極大值與極小值課時(shí)目標(biāo)(小)值的概念.,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其他點(diǎn)的函數(shù)值都小,f′(a)=0,而且在點(diǎn)x=a附近的左側(cè)________,右側(cè)________.類似地,函數(shù)y=f(
2024-12-05 09:29
【摘要】高二數(shù)學(xué)學(xué)案編號(hào)19班級(jí)姓名復(fù)數(shù)的乘法一、【學(xué)習(xí)目標(biāo)】理解復(fù)數(shù)乘法的運(yùn)算法則,了解乘方的規(guī)則,掌握一些常見結(jié)果?!局攸c(diǎn)、難點(diǎn)】乘方的對(duì)比學(xué)習(xí)、常見結(jié)果的理解與運(yùn)用。二、【教學(xué)過程】(一)復(fù)習(xí)回顧
2024-12-08 16:21
【摘要】簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo)能求形如f(ax+b)形式的復(fù)合函數(shù)的導(dǎo)數(shù).[來源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對(duì)于兩個(gè)函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個(gè)函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
【摘要】一、溫故知新1.函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)的關(guān)系:.)(,0)('。)(,0)(',),(這個(gè)區(qū)間內(nèi)單調(diào)遞減在那么函數(shù)如果增在這個(gè)區(qū)間內(nèi)單調(diào)遞那么函數(shù)如果內(nèi)在某個(gè)區(qū)間xfyxfxfyxfba????2.用導(dǎo)數(shù)法討論函數(shù)單調(diào)區(qū)間的基本步驟:;)求導(dǎo)數(shù)(;的定義域)求函數(shù)(
2025-03-12 14:58
【摘要】y=x3-2x上的點(diǎn)(1,-1)的切線方程方程相切的直線且與曲線求過點(diǎn)11)1,1(.22??xy求過某點(diǎn)的曲線的切線方程時(shí),除了要判斷該點(diǎn)是否在曲線上,還要分“該點(diǎn)是切點(diǎn)”和“該點(diǎn)不是切點(diǎn)”兩種情況進(jìn)行討論,解法復(fù)制。若設(shè)M(x0,y0)為曲線y=f(x)上一點(diǎn),則以M為切點(diǎn)的曲線的切線方程可設(shè)為y-y0=f’(x
2024-11-18 15:25
【摘要】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會(huì)利用導(dǎo)數(shù)畫出函數(shù)的大致圖像?!窘虒W(xué)重點(diǎn)】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點(diǎn)】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁,填寫知識(shí)點(diǎn).):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
2024-12-03 11:30
【摘要】第三章導(dǎo)數(shù)應(yīng)用§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)f(x)=2x-sinx在(-∞,+∞)上().A.增函數(shù)B.減函數(shù)C.有最大值D.有最小值解析∵f′(x)=2-cosx0,∴f(x)是
2024-12-03 00:14
【摘要】(第一課時(shí))單縣一中時(shí)克然多米諾骨牌問題情境一已知數(shù)列的通項(xiàng)公式為}{na22)55(???nnan(1)求出其前四項(xiàng),你能得到什么樣的猜想?(2)你的猜想正確嗎?對(duì)于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-17 12:01
【摘要】高二數(shù)學(xué)組徐瑞虹生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档膹?qiáng)有力工具.這一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題.創(chuàng)設(shè)情景實(shí)例探究:學(xué)校舉行慶祝五一勞動(dòng)節(jié)活動(dòng),需要張貼海報(bào)進(jìn)行宣傳.現(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報(bào),要
2024-11-18 12:13
【摘要】第1課時(shí)導(dǎo)數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系...對(duì)于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
2024-11-19 23:14
【摘要】定積分的概念:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點(diǎn)P附近的曲線,也就是說:在點(diǎn)P附近,曲線可以看作直線(即在很小范圍內(nèi)