【總結(jié)】DEABC導數(shù)在實際生活中的應用同步練習1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
2025-11-26 09:29
【總結(jié)】知識回顧導數(shù)的幾何意義:(瞬時速度或瞬時加速度)物理意義:曲線在某點處的切線的斜率;物體在某一時刻的瞬時度。由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx??????當如
2025-11-09 08:46
【總結(jié)】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
【總結(jié)】為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(lnx)'
【總結(jié)】2020/12/241導數(shù)在實際生活中的應用2020/12/2421、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的
2025-11-08 23:31
【總結(jié)】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
【總結(jié)】12???,??th,.,at,,規(guī)律導數(shù)的符號有什么變化地相應特點此點附近的圖象有什么是多少呢在此點的導數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過程形象解釋
2025-11-09 15:24
【總結(jié)】圖1導數(shù)在實際生活的實際應用同步練習1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
【總結(jié)】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關(guān)系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2025-11-10 22:43
【總結(jié)】§本課時欄目開關(guān)填一填研一研練一練【學習要求】1.了解導數(shù)在解決實際問題中的作用.2.掌握利用導數(shù)解決簡單的實際生活中的優(yōu)化問題.【學法指導】1.在利用導數(shù)解決實際問題的過程中體會建模思想.2.感受導數(shù)知識在解決實際問題中的作
2025-11-09 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導數(shù)【學習要求】1.理解函數(shù)的和、差、積、商的求導法則.2.理解求導法則的證明過程,能夠綜合運用導數(shù)公式和導數(shù)運算法則求函數(shù)的導數(shù).【學法指導】應用導數(shù)的四則運算法則和已學過的常用函數(shù)的導數(shù)公式可迅速解決一類簡單函數(shù)的求導問題.要透徹理解函數(shù)求導法則的結(jié)構(gòu)內(nèi)涵,注
2025-11-08 23:13
【總結(jié)】導數(shù)及其應用高考題第1題.設(shè)函數(shù)2()ln(23)fxxx???(Ⅰ)討論()fx的單調(diào)性;(Ⅱ)求()fx在區(qū)間3144???????,的最大值和最小值.答案:解:()fx的定義域為32?????????,.(Ⅰ)224622(21)(1)()223
2025-11-23 10:13
【總結(jié)】1.3.3最大值與最小值【學習要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導數(shù)求某定義域上函數(shù)的最值.【學法指導】弄清極值與最值的區(qū)別是學好本節(jié)的關(guān)鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2025-11-08 23:19
【總結(jié)】12??????????????????.,.,,,,.,,.,,00000值在相應區(qū)間上所有函數(shù)數(shù)于函大不小那么值點小的最大是函數(shù)如果哪個值最小哪個值最大上某個區(qū)間我們往往更關(guān)心函數(shù)在數(shù)性質(zhì)時函在解決實際問題或研究但是的值更小更大附近找不到比那么在值點小的極大
【總結(jié)】1.2.3簡單復合函數(shù)的導數(shù)【學習要求】1.了解復合函數(shù)的概念,掌握復合函數(shù)的求導法則.2.能夠利用復合函數(shù)的求導法則,并結(jié)合已經(jīng)學過的公式、法則進行一些復合函數(shù)的求導(僅限于形如f(ax+b)的導數(shù)).【學法指導】復合函數(shù)的求導將復雜的問題簡單化,體現(xiàn)了轉(zhuǎn)化思想;學習中要通過中間變量的引入理解