【總結(jié)】知識(shí)點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
2024-11-19 23:16
【總結(jié)】解剖高考對(duì)導(dǎo)數(shù)的考查要求高考對(duì)導(dǎo)數(shù)的考查要求是:①了解導(dǎo)數(shù)的實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;②熟記導(dǎo)數(shù)的基本公式,掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù);③理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極
2024-11-19 23:15
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會(huì)從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會(huì)靈活應(yīng)用;2.會(huì)用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過(guò)對(duì)函數(shù)單調(diào)性的研究,加深對(duì)函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力.二、學(xué)習(xí)重、難點(diǎn)靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問(wèn)題,并能運(yùn)用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過(guò)程1.復(fù)
【總結(jié)】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹(shù)高:15米樹(shù)齡:1000年高:15厘米時(shí)間:兩天實(shí)例1分析銀杏樹(shù)雨后春筍實(shí)例2分析物體從某一時(shí)刻開(kāi)始運(yùn)動(dòng),設(shè)s表示此物體經(jīng)過(guò)時(shí)間t走過(guò)的路程,在運(yùn)動(dòng)的過(guò)程中測(cè)得了一些數(shù)據(jù),如下表.t(秒)025
2024-11-18 13:30
【總結(jié)】正弦、余弦例題分析例1.△ABC中已知a=6,36?b,A=30°,求c.我們熟知用正弦定理可得兩解.其實(shí)用余弦定理也可:由??23362366222??????cc得c的二次方程c2-18c+72=0解得c1=12或c2=6.例2.如圖5—43四邊形ABCD中,AB=3,
2024-11-19 23:19
【總結(jié)】高考中導(dǎo)數(shù)問(wèn)題的六大熱點(diǎn)由于導(dǎo)數(shù)其應(yīng)用的廣泛性,為解決函數(shù)問(wèn)題提供了一般性的方法及簡(jiǎn)捷地解決一些實(shí)際問(wèn)題.因此在高考占有較為重要的地位,其考查重點(diǎn)是導(dǎo)數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導(dǎo)數(shù)解決實(shí)際問(wèn)題等方面,下面例析導(dǎo)數(shù)的六大熱點(diǎn)問(wèn)題,供參考.一、運(yùn)算問(wèn)題例1已知函數(shù)22()(1)xbfxx???,求導(dǎo)函數(shù)()fx?.
2024-12-05 06:34
【總結(jié)】例題講解:三角恒等變形應(yīng)用舉例[例1]已知sin(3)cos()tan()cot()2(),()cos()nxxxxfxnZnx????????????(1)求52();3f?(2)若34cos(),25????求()f?的值.
2024-11-19 20:36
【總結(jié)】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法;⒉初步會(huì)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題教學(xué)重點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.教學(xué)難點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.授課類(lèi)型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀教學(xué)過(guò)
【總結(jié)】拓展資料:導(dǎo)數(shù)在證明恒等式中的應(yīng)用一、預(yù)備知識(shí)定理1若函數(shù)f(x)在區(qū)間I上可導(dǎo),且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點(diǎn)x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
【總結(jié)】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo):1.會(huì)從幾何直觀了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.2.了解函數(shù)在某點(diǎn)取得極值的必要條件(導(dǎo)數(shù)在極值點(diǎn)兩端異號(hào))和充分條件();會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對(duì)多項(xiàng)式函數(shù)一般不超過(guò)三次.3.會(huì)求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【總結(jié)】第三章§2理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二考點(diǎn)三看下面兩個(gè)問(wèn)題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2024-11-18 08:08
【總結(jié)】導(dǎo)數(shù)的幾何意義學(xué)習(xí)要求1.理解導(dǎo)數(shù)的幾何意義2.會(huì)用導(dǎo)數(shù)的定義求曲線的切線方程自學(xué)評(píng)價(jià)1、割線的斜率:已知)(xfy?圖像上兩點(diǎn)))(,(00xfxA,))(,(00xxfxxB????,過(guò)A,B兩點(diǎn)割線的斜率是_________,即曲線割線的斜率就是___________.2、函數(shù))(xfy?在點(diǎn)
【總結(jié)】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標(biāo):1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用.一.知識(shí)梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)過(guò)程:一.創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過(guò)研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用。二.新課講授1.問(wèn)題:圖(1),
【總結(jié)】一元二次不等式解法·典型例題例若<<,則不等式--<的解是10a1(xa)(x)01a[]AaxBxa.<<.<<11aaCxaDxxa.>或<.<或>xaa11例有意義,則的取值范圍是
2024-12-03 03:12