【總結】知識點撥:利用導數求函數的極值例求下列函數的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數)(xf定義域內所有可能的極值點,然后按照函數極值的定義判斷在這些點處是否取得極值.解:1.函
2024-11-19 23:16
【總結】解剖高考對導數的考查要求高考對導數的考查要求是:①了解導數的實際背景(如瞬時速度、加速度、光滑曲線切線的斜率等),掌握函數在一點處的導數的定義和導數的幾何意義,理解導數的概念;②熟記導數的基本公式,掌握兩個函數和、差、積、商的求導法則,了解復合函數的求導法則,會求某些簡單函數的導數;③理解可導函數的單調性與其導數的關系,了解可導函數在某點取得極
2024-11-19 23:15
【總結】導數與函數的單調性一、學習目標1.會從幾何直觀探索并了解函數的單調性與其導數之間的關系,并會靈活應用;2.會用導數判斷或證明函數的單調性;3.通過對函數單調性的研究,加深對函數導數的理解,提高用導數解決實際問題的能力.二、學習重、難點靈活應用導數研究與函數單調性有關的問題,并能運用數形結合的思想方法.三、學習過程1.復
【總結】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹高:15米樹齡:1000年高:15厘米時間:兩天實例1分析銀杏樹雨后春筍實例2分析物體從某一時刻開始運動,設s表示此物體經過時間t走過的路程,在運動的過程中測得了一些數據,如下表.t(秒)025
2024-11-18 13:30
【總結】正弦、余弦例題分析例1.△ABC中已知a=6,36?b,A=30°,求c.我們熟知用正弦定理可得兩解.其實用余弦定理也可:由??23362366222??????cc得c的二次方程c2-18c+72=0解得c1=12或c2=6.例2.如圖5—43四邊形ABCD中,AB=3,
2024-11-19 23:19
【總結】高考中導數問題的六大熱點由于導數其應用的廣泛性,為解決函數問題提供了一般性的方法及簡捷地解決一些實際問題.因此在高考占有較為重要的地位,其考查重點是導數判斷或論證單調性、函數的極值和最值,利用導數解決實際問題等方面,下面例析導數的六大熱點問題,供參考.一、運算問題例1已知函數22()(1)xbfxx???,求導函數()fx?.
2024-12-05 06:34
【總結】例題講解:三角恒等變形應用舉例[例1]已知sin(3)cos()tan()cot()2(),()cos()nxxxxfxnZnx????????????(1)求52();3f?(2)若34cos(),25????求()f?的值.
2024-11-19 20:36
【總結】導數在實際問題中的應用教學目的:1.進一步熟練函數的最大值與最小值的求法;⒉初步會解有關函數最大值、最小值的實際問題教學重點:解有關函數最大值、最小值的實際問題.教學難點:解有關函數最大值、最小值的實際問題.授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀教學過
【總結】拓展資料:導數在證明恒等式中的應用一、預備知識定理1若函數f(x)在區(qū)間I上可導,且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數).證明在區(qū)間I上取定一點x0及x∈I.顯然,函數f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
【總結】導數在實際問題中的應用目標認知學習目標:1.會從幾何直觀了解函數單調性和導數的關系;能利用導數研究函數的單調性,會求函數的單調區(qū)間,對多項式函數一般不超過三次.2.了解函數在某點取得極值的必要條件(導數在極值點兩端異號)和充分條件();會用導數求函數的極大值、極小值,對多項式函數一般不超過三次.3.會求閉區(qū)間上函數的
2024-12-04 23:43
【總結】第三章§2理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三看下面兩個問題:(1)三角函數都是周期函數,y=tanx是三角函數,所以y=tanx是周期函數;(2)循環(huán)小數是有理數,2·是循環(huán)小數,所以2&
2024-11-18 08:08
【總結】導數的幾何意義學習要求1.理解導數的幾何意義2.會用導數的定義求曲線的切線方程自學評價1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????,過A,B兩點割線的斜率是_________,即曲線割線的斜率就是___________.2、函數)(xfy?在點
【總結】導數的概念及其幾何意義教學目標:1.導數的概念及幾何意義;2.求導的基本方法;3.導數的應用.教學重點:導數的綜合應用;教學難點:導數的綜合應用.一.知識梳理1.導數的概念及幾何意義.2.求導的基本方法①定義法:??xf?=????xxfxxfxyx????????
【總結】導數與函數的單調性教學過程:一.創(chuàng)設情景函數是客觀描述世界變化規(guī)律的重要數學模型,研究函數時,了解函數的贈與減、增減的快與慢以及函數的最大值或最小值等性質是非常重要的.通過研究函數的這些性質,我們可以對數量的變化規(guī)律有一個基本的了解.下面,我們運用導數研究函數的性質,從中體會導數在研究函數中的作用。二.新課講授1.問題:圖(1),
【總結】一元二次不等式解法·典型例題例若<<,則不等式--<的解是10a1(xa)(x)01a[]AaxBxa.<<.<<11aaCxaDxxa.>或<.<或>xaa11例有意義,則的取值范圍是
2024-12-03 03:12