【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡化;?運動學(xué)從幾何觀點研究物體的運動,而不涉及物體所受的力;?動力學(xué)研究物體的機械運動與作用力之間的關(guān)系。動力學(xué)就是從因果關(guān)系上論述物體的機械運動。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運動學(xué)則是動力學(xué)的特殊情況。低速、宏觀物體的機械運動的普遍規(guī)律。
2025-06-16 14:51
【總結(jié)】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(1,2),
2025-02-21 12:49
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】高等數(shù)學(xué)教案§12微分方程第十二章微分方程教學(xué)目的:1.了解微分方程及其解、階、通解,初始條件和特等概念。2.熟練掌握變量可分離的微分方程及一階線性微分方程的解法。3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單
2025-08-17 02:34
【總結(jié)】4.給定一階微分方程,(1).求出它的通解;(2).求通過點的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點的特解為;(3).因為所求直線與直線相切,所以只有唯一解,即只有唯一實根,從而,故與直線相切的解是;(4).把代入即得
2025-06-24 15:00
【總結(jié)】《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程》第5章位勢方程《偏微分方程
2024-12-08 03:19
【總結(jié)】第八講線性微分方程(2)高等教育電子音像出版社寧波大學(xué)陶祥興等編本節(jié)內(nèi)容提要一、準(zhǔn)備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計算公式.四、拉氏變換及應(yīng)用.一、準(zhǔn)備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-08 05:36
【總結(jié)】數(shù)學(xué)建模微分方程在研究實際問題時,常常會聯(lián)系到某些變量的變化率或?qū)?shù),這樣所得到變量之間的關(guān)系式就是微分方程模型。微分方程模型反映的是變量之間的間接關(guān)系,因此,要得到直接關(guān)系,就得求微分方程。求解微分方程有三種方法:1)求精確解;2)求數(shù)值解(近似解);3)定性理論方法。一、導(dǎo)彈追蹤問題
2025-05-05 18:14
【總結(jié)】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設(shè)所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】第九章微分方程第一節(jié)微分方程的概念引例:一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為2dyxdx?2,1??yx時其中??xdxy2,2Cxy??即,1?C求得.12??xy所求曲線方程為微分方程
2025-01-14 16:39
【總結(jié)】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【總結(jié)】無窮級數(shù)數(shù)項級數(shù)冪級數(shù)討論斂散性求收斂范圍,將函數(shù)展開為冪級數(shù),求和。傅立葉級數(shù)求函數(shù)的傅立葉級數(shù)展開,討論和函數(shù)的性質(zhì)。給定一個數(shù)列??,,,,,321nuuuu將各項依,1???nnu即稱上式為無窮級數(shù),其中第n項nu叫做級數(shù)的一般項
2024-10-05 00:06
【總結(jié)】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運算化成代數(shù)運算,求解出在定解區(qū)域中足夠多的點上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當(dāng)自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2025-08-05 07:11
【總結(jié)】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2025-08-20 11:53