【總結】平面向量的坐標運算(一)(教案)中衛(wèi)市第一中學俞清華教學目標:知識與技能:(1)理解平面向量的坐標概念;(2)掌握平面向量的坐標運算.過程與方法:(1)通過對坐標平面內點和向量的類比,培養(yǎng)學生類比推理的能力;(2)通過平面向量坐標表示和坐標運算法則的推導培養(yǎng)學生歸納、猜想、演繹的能力;(3)通過用代數方法處理幾何問題,提高學生用數形結合的思想方法解決問題的能力.
2025-04-16 23:06
【總結】2020屆高考數學復習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-10 00:27
【總結】第二節(jié)平面向量的基本定理及坐標表示基礎梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內的兩個的向量,那么對于這一平面內的任意向量a,一對實數λ1,λ2,使a=.其中
2024-11-12 16:44
【總結】高三一輪復習第四章 平面向量與復數 數系的擴充與復數的引入【教學目標】,理解復數相等的充要條件.?。軐⒋鷶敌问降膹蛿翟趶推矫嫔嫌命c或向量表示,并能將復平面上的點或向量所對應的復數用代數形式表示. ,了解兩個具體復數相加、相減運算的幾何意義.【重點難點】,會進行復數代數形式的四則
2025-04-17 12:37
【總結】平面向量的坐標運算教案一、教學目標1、知識與技能:掌握平面向量的坐標運算;2、過程與方法:通過對共線向量坐標關系的探究,提高分析問題、解決問題的能力。3情感態(tài)度與價值觀:學會用坐標進行向量的相關運算,理解數學內容之間的內在聯系。二、教學重點與難點教學重點:平面向量的坐標運算。教學難點:向量的坐標表示的理解及運算的準確.三、教學設想(一
2025-04-17 01:00
【總結】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2024-11-09 06:28
【總結】......平面向量基本定理及坐標表示1.平面向量基本定理如果e1、e2是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量a,存在唯一一對實數λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內所有
2025-06-30 20:18
【總結】高三一輪復習等差數列及其前n項和【教學目標】..,并能用等差數列有關知識解決相應的問題.、二次函數的關系.【重點難點】,提高分析問題和解決問題的能力;【教學策略與方法】自主學習、小組討論法、師生互動法【教學過程】教學流程教師活動學生活動設計意圖
2025-04-17 13:02
【總結】課題坐標的標示及運算教學目標知識與技能了解平面向量的正交分解,掌握向量的坐標表示.過程與方法掌握兩個向量和、差及數乘向量的坐標運算法則.情感態(tài)度價值觀正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.重點溝通向量“數”與“形”的特征,使向
2024-11-19 17:32
【總結】第2節(jié)平面向量基本定理及其坐標表示(對應學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【總結】?1.平面向量共線的坐標表示?設a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a=(-1,2),b=(3,5)?B.a=(1,2),b=(2,1)?C.a=(2,-1),b=(3,4)?D.a=(-2,1
2024-08-14 18:26
【總結】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數,使得ab
2024-11-17 19:47
2024-11-18 12:17
【總結】第1頁共5頁學大教育高三第一輪復習數學-向量及向量的基本運算一、教學目標:1.理解向量的有關概念,掌握向量的加法與減法、實數與向量的積、向量的數量積及其運算法則,理解向量共線的充要條件.2.會用向量的代數運算法則、三角形法則、平行四邊形法則解決有關問題.不斷培養(yǎng)并深化用數形結合的思想方法解題的自覺意識.二、教學重點:向量的概
2025-01-07 19:43
【總結】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03