【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,
2024-11-11 21:10
2024-11-10 01:04
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-11 09:01
【總結(jié)】::CBAABCD一.向量的加法:首尾相接共同起點(diǎn)ab?ab?aabbbab二.向量的減法:BADab?a共同起點(diǎn)指向被減數(shù)溫故知新1.當(dāng)時(shí):0??2.當(dāng)時(shí):0
2025-08-15 23:54
【總結(jié)】第7章平面向量的坐標(biāo)表示(1)向量的概念:既有方向又有大小的量,注意向量和數(shù)量的區(qū)別;(2)零向量:長(zhǎng)度為零的向量叫零向量,記作:,注意零向量的方向是任意方向;(3)單位向量:給定一個(gè)非零向量,與同向且長(zhǎng)度為1的向量叫的單位向量,的單位向量是;(4)相等向量:方向與長(zhǎng)度都相等的向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):如果向量的基線互相平
2025-06-30 20:51
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-12 19:04
【總結(jié)】平面向量基本定理一、問題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個(gè)向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【總結(jié)】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2024-11-09 03:31
【總結(jié)】平面向量的坐標(biāo)運(yùn)算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對(duì)應(yīng)一一對(duì)應(yīng)點(diǎn)AOA向量(,)xy坐標(biāo)1122+eeaaa?12(,)aaa?1
2025-07-20 05:00
【總結(jié)】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2025-08-05 06:24
【總結(jié)】高一數(shù)學(xué)導(dǎo)學(xué)案編制人:審核人:必修4第二章第1課時(shí)向量概念及物理意義【學(xué)習(xí)目標(biāo)】,理解向量的概念.2.理解零向量、單位向量、共線向量、相等向量等概念?!窘虒W(xué)重點(diǎn)】向量、零向量、單位向量、平行向量的概念.【教學(xué)難點(diǎn)】向量及相關(guān)概念的理解,零向量、單位向量、平行向量的判斷【教材
2025-04-17 12:24
【總結(jié)】平面向量基本定理2022年8月22日星期一(0),,.(a0,0b0aabbab?????????向量與共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)使若當(dāng)時(shí),不唯一;當(dāng)時(shí),不存在)一、課前準(zhǔn)備::共線向量定理復(fù)習(xí)1:12122:,
2025-07-25 16:48
【總結(jié)】平面向量基本定理問題情境火箭在飛行過程中的某一時(shí)刻速度可以分解成豎直向上和水平向前的兩個(gè)速度。在力的分解的平行四邊形過程中,我們看到一個(gè)力可以分解為兩個(gè)不共線方向的力之和。那么平面內(nèi)的任一向量否可以用兩個(gè)不共線的向量來表示呢?動(dòng)畫演示平面向量基本定理12121122,,
2024-10-19 17:16
【總結(jié)】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理1.平面向量基本定理及坐標(biāo)表示(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè)_______向量,那么對(duì)于這一平面內(nèi)的任意向量a,_______一對(duì)實(shí)數(shù)使a=__________.其中,____________________叫做表示這一平面內(nèi)所有向量的一組基底.
2024-11-12 01:26