【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識(shí)概要:一、求軌跡的一般方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡,證明五個(gè)步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個(gè)定點(diǎn)(焦點(diǎn)F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點(diǎn)的軌跡。3.FLxLFxFxL當(dāng)0e1時(shí),方程表示橢圓,F(xiàn)是左焦點(diǎn),l是左準(zhǔn)線。當(dāng)1e時(shí),方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【總結(jié)】高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握函數(shù)與方程
2024-11-10 00:28
【總結(jié)】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設(shè)分別是橢圓的左、右焦點(diǎn),若在直線上存在點(diǎn)P,使線段的中垂線過點(diǎn),求橢圓離心率的取值范圍.解法一:設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因?yàn)閥2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結(jié)】第九章 幾何問題的轉(zhuǎn)換解析幾何幾何問題的轉(zhuǎn)換一、基礎(chǔ)知識(shí):在圓錐曲線問題中,經(jīng)常會(huì)遇到幾何條件與代數(shù)條件的相互轉(zhuǎn)化,合理的進(jìn)行幾何條件的轉(zhuǎn)化往往可以起到“四兩撥千斤”的作用,極大的簡化運(yùn)算的復(fù)雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉(zhuǎn)化。1、在幾何問題的轉(zhuǎn)化
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握
2024-11-11 02:53
【總結(jié)】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實(shí)軸長是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點(diǎn)F的直
2025-07-23 20:57
【總結(jié)】圓錐曲線中的定點(diǎn)問題明對(duì)任意情況都成立找到定點(diǎn),再證方法三:通過特殊位置的值求出方法二:通過計(jì)算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點(diǎn)F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】大慶目標(biāo)教育圓錐曲線一、知識(shí)結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2);這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)
2025-08-04 14:02
【總結(jié)】......關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;
2025-03-25 00:02
【總結(jié)】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個(gè)重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識(shí):1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
2025-03-25 00:04
【總結(jié)】WORD資料可編輯直線圓錐曲線有關(guān)向量的問題高考考什么知識(shí)要點(diǎn):1.直線與圓錐曲線的公共點(diǎn)的情況(1)沒有公共點(diǎn)方程組無解(2)一個(gè)公共點(diǎn)(3)兩個(gè)公共點(diǎn)2.連結(jié)圓錐曲線上兩個(gè)點(diǎn)的線段稱為圓錐曲線的弦,要能熟練地利用方程的根與
2025-03-25 06:29
【總結(jié)】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個(gè)端點(diǎn)在軸和軸上移動(dòng),求線段AB的中點(diǎn)M的軌跡方程:必修2課本P124B組:已知M與兩個(gè)定點(diǎn)(0,0),A(3,0)的距離之比為,求點(diǎn)M的軌跡方程;(一般地:必修2課本P144B組2:已知點(diǎn)M(,)與兩個(gè)定點(diǎn)的距離之比為一個(gè)常數(shù);討論點(diǎn)M(,)的軌跡方程(分=1,與1進(jìn)行討論)
【總結(jié)】圓錐曲線過定點(diǎn)問題一、小題自測1.無論取任何實(shí)數(shù),直線必經(jīng)過一個(gè)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個(gè)常見結(jié)論:滿足一定條件的曲線上兩點(diǎn)連結(jié)所得的直線過定點(diǎn)或滿足一定條件的曲線過定點(diǎn),這構(gòu)成了過定點(diǎn)問題。1、過定點(diǎn)模型:是圓錐曲線上的兩動(dòng)點(diǎn),是一定點(diǎn),其
【總結(jié)】直線與圓錐曲線綜合問題一.考點(diǎn)分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個(gè)一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02