【總結(jié)】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長(zhǎng)為4a(定值)證明:由橢圓的定義即 2、焦點(diǎn)⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當(dāng)P在短軸上時(shí),∠F1PF2最大證明:
2025-08-05 04:45
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2025-08-04 07:08
【總結(jié)】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁(yè)例2)如圖,在圓上任取一點(diǎn)P,過點(diǎn)P作X軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?變式1:設(shè)點(diǎn)P是圓上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則,.即,.
2025-08-04 10:24
【總結(jié)】2.5圓錐曲線的統(tǒng)一定義學(xué)習(xí)目標(biāo).2.能用坐標(biāo)法解決一些與圓錐曲線有關(guān)的簡(jiǎn)單幾何問題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練2.5課前自主學(xué)案課前自主學(xué)案溫故夯基1.平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做____.2.平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的差
2025-07-18 18:16
【總結(jié)】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個(gè)定點(diǎn)(焦點(diǎn)F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點(diǎn)的軌跡。3.FLxLFxFxL當(dāng)0e1時(shí),方程表示橢圓,F(xiàn)是左焦點(diǎn),l是左準(zhǔn)線。當(dāng)1e時(shí),方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【總結(jié)】橢圓必背的經(jīng)典結(jié)論1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.4.以焦點(diǎn)半徑PF1為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-24 04:00
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識(shí)概要:一、求軌跡的一般方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡(jiǎn)單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡(jiǎn),證明五個(gè)步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】1.已知橢圓(a>b>0),O為坐標(biāo)原點(diǎn),P、Q為橢圓上兩動(dòng)點(diǎn),(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.圓錐曲線性質(zhì)對(duì)比橢圓雙曲線焦點(diǎn)三角形面積兩斜率乘積定值A(chǔ)B是橢圓的不平行于對(duì)稱軸的弦,M為AB的中點(diǎn),則,即AB是雙曲線(a>0,b>0)的不平行于對(duì)稱軸的弦,M為AB的中點(diǎn)
2025-06-24 03:53
【總結(jié)】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長(zhǎng)為2a的線段的兩個(gè)端點(diǎn)在軸和軸上移動(dòng),求線段AB的中點(diǎn)M的軌跡方程:必修2課本P124B組:已知M與兩個(gè)定點(diǎn)(0,0),A(3,0)的距離之比為,求點(diǎn)M的軌跡方程;(一般地:必修2課本P144B組2:已知點(diǎn)M(,)與兩個(gè)定點(diǎn)的距離之比為一個(gè)常數(shù);討論點(diǎn)M(,)的軌跡方程(分=1,與1進(jìn)行討論)
2025-03-25 00:04
【總結(jié)】WORD資料可編輯橢圓與雙曲線的對(duì)偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3.以焦點(diǎn)弦P
2025-04-17 13:13
【總結(jié)】第1頁(yè)共35頁(yè)普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【總結(jié)】金太陽(yáng)新課標(biāo)資源網(wǎng)圓錐曲線與方程測(cè)試題一、選擇題(本大題共12小題,第小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符是合題目要求的.)1.若焦點(diǎn)在x軸上的橢圓的離心率為,則n=()A.B.C.D.(a0,mb0)的離心率互為倒數(shù),那么以a、b、m為邊
2025-07-23 20:57
【總結(jié)】《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁(yè)例2)如圖,在圓上任取一點(diǎn)P,過點(diǎn)P作X軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?變式1:設(shè)點(diǎn)P是圓上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則,.即,.
2025-07-25 23:55
【總結(jié)】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關(guān)點(diǎn)法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設(shè)圓C:(x-1)2+y2=1,過原點(diǎn)O作圓的任意弦OQ,求所對(duì)弦的中點(diǎn)P的軌跡方程。一.直接法設(shè)P(
2025-06-22 19:28
【總結(jié)】1.掌握橢圓的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì)、了解橢圓的參數(shù)方程.2.掌握雙曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).3.掌握拋物線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).的初步應(yīng)用.3.有關(guān)直線與圓錐曲線位置關(guān)系問題,是高考的重?zé)狳c(diǎn)問題,這類問題常涉及圓錐曲線的性質(zhì)和直線的基本知識(shí)以及線段中點(diǎn)、弦長(zhǎng)等,分析
2025-03-23 06:21