【總結(jié)】知識結(jié)構(gòu)?????圓錐曲線橢圓雙曲線拋物線標(biāo)準(zhǔn)方程幾何性質(zhì)標(biāo)準(zhǔn)方程幾何性質(zhì)標(biāo)準(zhǔn)方程幾何性質(zhì)第二定義第二定義統(tǒng)一定義綜合應(yīng)用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
2025-08-05 04:45
【總結(jié)】山東省嘉祥縣第四中學(xué)曾慶坤一、復(fù)習(xí)圓錐曲線的定義1、橢圓的第一定義與第二定義2、雙曲線的第一定義與第二定義3、拋物線的定義二、經(jīng)典回顧1、已知動圓M和圓內(nèi)切,并和圓外切,動圓圓心M的軌跡方程為
2024-11-06 14:25
【總結(jié)】2022年01月圓的推廣飛船軌道為什么斜著切割一個圓柱得到的截線是一個橢圓呢?有關(guān)圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結(jié)構(gòu)中扮演著怎樣的角色?斜切圓柱“數(shù)學(xué)是人類文化的重要組成部分……應(yīng)適當(dāng)反映數(shù)學(xué)的歷史、應(yīng)用和發(fā)展趨勢,數(shù)學(xué)
2025-01-19 01:18
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題常化為等式解決,要加強等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線的簡單應(yīng)用。二.命題走向近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-03-25 06:47
【總結(jié)】?解析幾何的產(chǎn)生?十六世紀(jì)以后,由于生產(chǎn)和科學(xué)技術(shù)的發(fā)展,天文、力學(xué)、航海等方面都對幾何學(xué)提出了新的需要。比如,德國天文學(xué)家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學(xué)家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復(fù)雜的曲線,原先的一套方法顯然已經(jīng)不適應(yīng)了
2025-08-05 10:19
【總結(jié)】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點P,過點P作X軸的垂線段PD,D為垂足.當(dāng)點P在圓上運動時,線段PD的中點M的軌跡是什么?變式1:設(shè)點P是圓上的任一點,定點D的坐標(biāo)為(8,0).當(dāng)點P在圓上運動時,求線段PD的中點M的軌跡方程.解:設(shè)點M的坐標(biāo)為,點P的坐標(biāo)為,則,.即,.
2025-08-04 10:24
【總結(jié)】圓錐曲線與方程習(xí)題圓錐曲線與方程練習(xí)題及答案一、選擇題【共12道小題】1、以的焦點為頂點,頂點為焦點的橢圓方程為(?)A.???????????B.????
2025-08-04 14:53
【總結(jié)】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計設(shè)計者姓名郭曉泉設(shè)計者單位華亭縣第二中學(xué)
2025-05-12 01:30
【總結(jié)】2009屆廣東?。ㄕn改區(qū))各地市期末數(shù)學(xué)分類試題《直線與圓及其方程》、《圓錐曲線與方程》部分《直線與圓及其方程》、《圓錐曲線與方程》一、選擇題1.【廣東韶關(guān)·文】BA.1B.C.D.2.【潮州·理科】8、(文科10)已知點是圓:內(nèi)一點,直線是以為中點的弦所在的直線,若直線的
2025-07-22 19:44
【總結(jié)】一、坐標(biāo)系1、數(shù)軸它使直線上任一點P都可以由惟一的實數(shù)x確定2、平面直角坐標(biāo)系在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定。3、空間直角坐標(biāo)系在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的交點為原點,并確定了度量單位和這三條直線
2025-06-24 02:37
【總結(jié)】新課標(biāo)高中一輪總復(fù)習(xí)理數(shù)理數(shù)第十二單元坐標(biāo)系與方程知識體系考綱解讀.(1)理解坐標(biāo)系的作用.(2)了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.(3)能在極坐標(biāo)系中用極坐標(biāo)表示點的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點的位置的區(qū)別,能進行極坐標(biāo)與直角坐標(biāo)的互化.(4)能在極坐標(biāo)系
2025-07-23 09:52
【總結(jié)】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2025-07-20 00:18
【總結(jié)】......§知識要點一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點,焦點在x軸上:.ii.中心在原點,焦點在軸上:.②一般方程:.③橢
2025-06-22 23:13
【總結(jié)】平面內(nèi)到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當(dāng)②時,表示線段F1F2;當(dāng)③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結(jié)】精品資源第八章圓錐曲線的方程1、已知F1、F2是雙曲線的兩焦點,以線段F1F2為邊作正三角形,若雙曲線恰好平分正三角形的另兩邊,則雙曲線的離心率是() A、 B、 C、 D、MxyNF21、D【思路分析】法一:F2(c,0),M(0,c)依MF2中點N()在雙曲線上,得=1即=1=1.注意到e1,解
2025-06-29 16:44