【總結】動點的軌跡問題根據動點的運動規(guī)律求出動點的軌跡方程,這是解析幾何的一大課題:一方面求軌跡方程的實質是將“形”轉化為“數”,將“曲線”轉化為“方程”,通過對方程的研究來認識曲線的性質;另一方面求軌跡方程是培養(yǎng)學生數形轉化的思想、方法以及技巧的極好教材。該內容不僅貫穿于“圓錐曲線”的教學的全過程,而且在建構思想、函數方程思想、化歸轉化思想等方面均有體現和滲透。軌跡問題是高考中的一個熱點
2025-03-24 12:53
【總結】初中數學動點問題練習題1、(寧夏回族自治區(qū))已知:等邊三角形的邊長為4厘米,長為1厘米的線段在的邊上沿方向以1厘米/秒的速度向點運動(運動開始時,點與點重合,點到達點時運動終止),過點分別作邊的垂線,與的其它邊交于兩點,線段運動的時間為秒.1、線段在運動的過程中,為何值時,四邊形恰為矩形?并求出該矩形的面積;CPQBAMN(2)線段在運動的過程中,四邊
2025-06-18 06:31
【總結】......圓中的動態(tài)問題【方法點撥】圓中的動態(tài)問題實際是圓的分類討論問題,做這種題型重要的是如何將動點轉化為固定的點,從而將題型變?yōu)榉诸愑懻摗镜湫屠}】題型一:圓中的折疊問題例題一(2012
2025-03-25 00:00
【總結】動點問題專題訓練1、如圖,已知中,厘米,厘米,點為的中點.(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.AQCDBP①若點Q的運動速度與點P的運動速度相等,經過1秒后,與是否全等,請說明理由;②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使與全等?(2)若點Q以②中的運動
2025-06-18 07:06
【總結】初中七年級上動點題之數軸專題1、思考下列問題并在橫線上填上答案.思考下列問題并在橫線上填上答案.(1)數軸上表示-3的點與表示4的點相距________個單位.(2)數軸上表示2的點先向右移動2個單位,再向左移動5個單位,最后到達的點表示的數是 ______.(3)數軸上若點A表示的數是2,點B與點A的距離為3,則點B表示的數是 _____.(4)若|a-3|=2,|b+
2025-03-24 02:40
【總結】《相交線與平行線綜合探究型題》 1.(2014春?棲霞市期末)如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=
2025-03-25 03:17
【總結】......七年級線段動點問題1、如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點AB=14.(1)若點P在線段AB上,且AP=8,則線段MN
2025-03-25 07:09
【總結】專題3(動點路徑長)一.選擇題(共2小題)1.如圖,拋物線y=x2﹣x﹣與直線y=x﹣2交于A、B兩點(點A在點B的左側),動點P從A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.若使點P運動的總路徑最短,則點P運動的總路徑的長為( ?。.B.C.D. 2.如圖,半徑為4
2025-06-18 06:30
【總結】因動點產生的相似三角形問題關鍵詞:動點、相似三角形動點:運動的點或者說是不確定的點,有時題目中會明確指出動點,有時題目中相關點的坐標含有參數,換言之就是在不同的條件下會有不同的位置,或者滿足條件的位置有多個。相似三角形:對應角相等,對應邊成比例的兩個或多個三角形,兩個三角形相似的判定定理一般說來有3個,定理1:兩個角對應相等,兩三角形相似‘AA”定理2:兩邊對
2025-08-05 04:15
【總結】......動點問題所謂“動點型問題”是指題設圖形中存在一個或多個動點,它們在線段、,靈活運用有關數學知識解決問題.關鍵:動中求靜.數學思想:分類思想數形結合思想轉化思想1、如圖1,梯形ABCD中,AD∥
2025-06-18 06:53
【總結】本資料來源于《七彩教育網運動變化型問題專題復習例1如圖在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.在運動過程中,△PCQ關于直線PQ對稱的圖形是△PDQ.設運動時間為
2025-04-04 03:46
【總結】動點問題(與圓相關)1.如圖,在平面直角坐標系中,四邊形OABC是梯形,BC∥AO,頂點O在坐標原點,頂點A(4,0),頂點B(1,4).動點P從O出發(fā),以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.當其中一個點到達終點時,另一個也隨之停止.設運動時
【總結】數學因運動而充滿活力,數學因變化而精彩紛呈。動態(tài)題是近年來中考的的一個熱點問題,以運動的觀點探究幾何圖形的變化規(guī)律問題,稱之為動態(tài)幾何問題,隨之產生的動態(tài)幾何試題就是研究在幾何圖形的運動中,伴隨著出現一定的圖形位置、數量關系的“變”與“不變”性的試題,就其運動對象而言,有點動、線動、面動三大類,就其運動形式而言,有軸對稱(翻折)、平移、旋轉(中心對稱、滾動)等,就問題類型而言,有函數關系和圖
2025-04-04 03:44
【總結】決勝2021中考數學壓軸題全揭秘精品 專題15 動點綜合問題 【考點1】動點之全等三角形問題 【例1】1.如圖,CA⊥BC,垂足為C,AC=2Cm,BC=6cm,射線BM⊥BQ,垂足為B,動點...
2025-10-07 22:26