【總結(jié)】1乘法公式2由條件概率的定義:即若P(B)0,則P(AB)=P(B)P(A|B)(2))()()|(BPABPBAP?而P(AB)=P(BA)二、乘法公式若已知P(B),P(A|B)時(shí),可以反求P(AB).將A、B的位置對(duì)調(diào),有故若P(
2024-08-01 17:03
【總結(jié)】1)第三章隨機(jī)變量及其分布§5多維隨機(jī)變量函數(shù)的分布3)在實(shí)際問題中,常常會(huì)遇到需要求隨機(jī)變量函數(shù)的分布問題。例如:在下列系統(tǒng)中,每個(gè)元件的壽命分別為隨機(jī)變量X,Y,它們相互獨(dú)立同分布。我們想知道系統(tǒng)壽命Z的分布。),min(YXZ?),max(YXZ?YXZ??這就是求
2024-10-04 18:23
【總結(jié)】?概率密度及其性質(zhì)?指數(shù)分布?均勻分布?正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布返回主目錄§4連續(xù)型隨機(jī)變量的概率密度第二章隨機(jī)變量及其分布一、連續(xù)型隨機(jī)變量的概念與性質(zhì)1)定義如果對(duì)于隨機(jī)變量X的分布函數(shù)F(x),存在非負(fù)函數(shù)f(x),使得對(duì)于任意實(shí)數(shù)x,有
2024-10-05 00:15
【總結(jié)】第十四次課?前面研究的是隨機(jī)變量和隨機(jī)變量的分布函數(shù),分布律及概率密度函數(shù),它們能夠全面完整地描述隨機(jī)變量的概率性質(zhì),但在實(shí)際問題中,有的并不需要全面考察隨機(jī)變量和隨機(jī)向量的分布規(guī)律,而只需要知道它們的某些特征。我們把描述隨機(jī)變量(向量)某種特征的量稱為隨機(jī)變量(向量)的數(shù)字特征。它們?cè)诶碚撋涎芯亢蛯?shí)際應(yīng)用中都具有重要作用?!祀S機(jī)變量的數(shù)學(xué)期
2024-08-13 17:35
【總結(jié)】而f(x)為X的概率密度函數(shù),數(shù)x,有若存在簡(jiǎn)稱為概率密度或密度函數(shù).一、連續(xù)型§4連續(xù)型隨機(jī)變量及其分布1、定義:設(shè)X的分布函數(shù)為F(x),)()xFxftdt????(則稱X為連續(xù)型,使得對(duì)任意實(shí)一個(gè)非負(fù)可積函數(shù)f
2025-01-19 14:49
【總結(jié)】1概率論(續(xù))2概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象統(tǒng)計(jì)規(guī)律性的一門學(xué)科。3第五章大數(shù)定律和中心極限定理關(guān)鍵詞:大數(shù)定律中心極限定理§1大數(shù)定律(lawsoflargenumbers)?在給出大數(shù)定律之前
2024-10-17 14:45
【總結(jié)】第一章重點(diǎn):全概率公式、貝葉斯公式要點(diǎn):集合的運(yùn)算、概率的性質(zhì)及運(yùn)算、事件的獨(dú)立性典型例題:P12例P15例P19例P21例P23例P27例常見問題:書寫和表述的規(guī)范性,排列組合區(qū)分不清.是什么但未交代書寫不規(guī)范,如寫了題如:排列組合的計(jì)算失誤,
2024-11-03 23:17
【總結(jié)】第八章參數(shù)估計(jì)?點(diǎn)估計(jì)?點(diǎn)估計(jì)的優(yōu)良性評(píng)判標(biāo)準(zhǔn)?區(qū)間估計(jì)點(diǎn)估計(jì)的定義設(shè)總體~(,)Xfx?,?未知,(nXXX,,,21?)為樣本,用(nXXX,,,21?)的函數(shù)來估計(jì)?。稱g(nXXX,,,21?)為?的一個(gè)點(diǎn)估計(jì),記?
2025-05-06 18:02
【總結(jié)】2022/6/11概率論與數(shù)理統(tǒng)計(jì)2概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象數(shù)量規(guī)律的一門學(xué)科。3?第一章概率論的基本概念?隨機(jī)試驗(yàn)?樣本空間?概率和頻率?等可能概型(古典概型)?條件概率?獨(dú)立性?第二章隨機(jī)變量及其分布
2025-05-04 02:54
【總結(jié)】?jī)蓚€(gè)隨機(jī)變量函數(shù)的分布引言問題的一般提法為:(X1,…,Xn)為n維隨機(jī)變量,Y1,…,Ym都是X1,…,Xn的函數(shù)yi=gi(x1,x2,…,xn),i=1,2,···,m;要求(Y1,…,Ym)的概率分布.設(shè)(X,Y)為二維隨機(jī)變量,討論(1)X
2025-05-01 02:28
【總結(jié)】1概率論(續(xù))2概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象統(tǒng)計(jì)規(guī)律性的一門學(xué)科。3第五章大數(shù)定律和中心極限定理關(guān)鍵詞:契比雪夫不等式大數(shù)定律中心極限定理4§1大數(shù)定律(lawsoflargenumbers)
2024-09-28 19:34
【總結(jié)】§6獨(dú)立性第一章概率論的基本概念1/9拋甲、乙兩枚硬幣,觀察正反面出現(xiàn)的情況,則樣本空間是{HH,HT,TH,TT}S?記事件{},{}AB??甲出現(xiàn)正面乙出現(xiàn)正面
【總結(jié)】條件概率與貝葉斯公式一、條件概率與乘法公式二、全概率公式與貝葉斯公式條件概率ConditionalProbabilityABAB()B?()AB?()A??()n?拋擲一顆骰子,觀察出現(xiàn)的點(diǎn)數(shù)A={出現(xiàn)的點(diǎn)數(shù)是奇數(shù)}={1,3,5}B={出現(xiàn)的點(diǎn)數(shù)不超過3}={1,2,3}
【總結(jié)】概率論和數(shù)理統(tǒng)計(jì)自考的人共同加油主要內(nèi)容第一章:隨機(jī)事件與概率第二章:隨機(jī)變量及其概率分布第三章:多維隨機(jī)變量及其概率分布第四章:隨機(jī)變量的數(shù)字特征第五章:大數(shù)定律及中心極限定理第六章:統(tǒng)計(jì)量及其抽樣分布第七章:參數(shù)估計(jì)第八章:假設(shè)檢驗(yàn)第九章:回歸分析第一章隨機(jī)事件與概率
2025-01-17 17:38
【總結(jié)】一、離散型隨機(jī)變量的分布列二、常見離散型隨機(jī)變量的分布列三、小結(jié)第二節(jié)離散型隨機(jī)變量及其分布列引入分布的原因以認(rèn)識(shí)離散隨機(jī)變量為例,我們不僅要知道X取哪些值,而且還要知道它取這些值的概率各是多少,這就需要分布的概念.有沒有分布是區(qū)分一般變量與隨機(jī)變
2024-08-16 10:48