【摘要】§函數(shù)的最大值與最小值高三數(shù)學選修(Ⅱ)第三章導數(shù)與微分MaximumValue&MinimumValueofFunction實際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個長方體無蓋容器,要分別過矩形四個頂點處各挖去一個全等的小正方形,按加工要求,長方體的高不小
2024-11-18 00:27
【摘要】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導數(shù)和由參數(shù)方程確定的函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)0),(?yxF
2024-08-14 16:24
【摘要】函數(shù)的最大值與最小值一、復習與引入f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方法是:①如果在x0附近的左側右側,那么,f(x0)是極大值;②如果在x0附近的左側右側
2024-10-25 11:51
【摘要】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測)若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2024-11-20 18:11
【摘要】函數(shù)的最大(?。┲瞪仃P市田家炳中學范永祥一、教材分析本課是人教版教材《數(shù)學1》。本課時主要學習函數(shù)的最大(小)值的概念,探索函數(shù)最大(?。┲登蠼夥椒?。本節(jié)課是在學生學習了函數(shù)概念、單調(diào)性的基礎上所研究的函數(shù)的一個重要性質(zhì)。函數(shù)最大(?。┲档母拍钍茄芯烤唧w函數(shù)值域的依據(jù),對于學生進一步研究函數(shù)圖像性質(zhì),以及將來研究不等式問題有重要作用。函數(shù)最大(小)值的研究方法也具
2025-04-22 23:39
【摘要】熊老師初中數(shù)學教育工作室初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最小;(1)點A、B在直線m兩側:(2)點A、B在直線同側:A、A’是關于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小
2025-07-02 07:50
【摘要】最大值、最小值問題一、最大值、最小值的求法二、應用一、最值的求法oxyoxybaoxyabab.],[)(],[)(在上的最大值與最小值存在個導數(shù)為零的點,則可導,并且至多有有限處上連續(xù),除個別點外處在若函數(shù)baxfbaxf步驟:;,比較大
2024-08-29 01:39
【摘要】最大值與最小值一般地,設函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-11-27 13:08
【摘要】......初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側:
2025-03-30 12:33
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側:(2)點A、B在直線同側:A、A’是關于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最小;(1)點A、B在直線m兩側:(2)點A、B在直線同側:A、A’是關于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線
【摘要】(1)基本不等式(2)基本不等式的最大值與最小值對于任意實數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當且僅當x=y時等號成立22x+y≥xy2如果a,b都是正數(shù),那么,當且僅當a=b時,等號成立.a+b≥ab2,,
2025-07-31 16:08
【摘要】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導數(shù)的應用目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點
2024-08-14 17:50
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學最大值與最小值課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當x1時,f′(x)0,x1時
2024-12-12 18:01
【摘要】最大值、最小值問題(二)雙基達標?限時20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯解析設一段長為x,則另一段為8-x,其中0x8.設y=x3+(8-x)3,則y′=3x2-
2024-12-11 00:13