【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)。如果f(x0)的值比x0附近所有各點(diǎn)的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個(gè)極小值。記作y極小值=f(x0),x0是極小值點(diǎn)。極大
2024-11-26 08:47
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲?;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點(diǎn):掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點(diǎn):提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-16 01:48
【摘要】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-13 06:35
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)單調(diào)性課后知能檢測(cè)蘇教版選修1-1一、填空題1.(2021·南京高二檢測(cè))函數(shù)y=x3-3x2+1的單調(diào)遞減區(qū)間為________.【解析】y′=3x2-6x=3(x2-2x),令y′0,可得0x2.【答案】
2024-12-12 21:34
【摘要】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用最大值、最小值問題第1課時(shí)函數(shù)的最大值與最小值第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會(huì)用導(dǎo)數(shù)求某定義域上函數(shù)的最值.f(x)的最大值為_____,最小值為
2024-11-24 23:22
【摘要】導(dǎo)數(shù)應(yīng)用第四章§2導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用最大值、最小值問題第2課時(shí)生活中的優(yōu)化問題舉例第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)能利用導(dǎo)數(shù)知識(shí)解決實(shí)際生活中的利潤(rùn)最大、效率最高、用料最省等最優(yōu)化問題.,我們經(jīng)常遇到面積、體積最大,周長(zhǎng)最小,利
2024-11-25 08:43
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)圓錐曲線課后知能檢測(cè)蘇教版選修1-1一、填空題1.動(dòng)點(diǎn)M到定點(diǎn)A(12,0)、B(-12,0)的距離之和是2,則動(dòng)點(diǎn)M的軌跡是________.【解析】∵M(jìn)A+MB=2>1=AB,∴M的軌跡是橢圓.【答案】橢圓2.到直線
2024-12-13 03:09
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)平均變化率課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2024-12-12 20:01
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實(shí)際問題如圖,有一長(zhǎng)80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個(gè)長(zhǎng)方體無(wú)蓋容器,要分別過矩形四個(gè)頂點(diǎn)處各挖去一個(gè)全等的小正方形,按加工要求,長(zhǎng)方體的高不小
2024-11-18 00:27
【摘要】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測(cè))若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2024-11-20 18:11
【摘要】最大值與最小值教學(xué)目的:⒈使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;⒉使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法.教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-28 00:26
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)四種命題課后知能檢測(cè)蘇教版選修1-1一、填空題1.下列語(yǔ)句是命題的是________.①若a>b0,則a2>b2;②a2>b2;③方程x2-x-1=0的近似根;④方程x2-x-1=0有根嗎?【解析】②③
【摘要】最大值、最小值問題(二)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.將長(zhǎng)度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯(cuò)解析設(shè)一段長(zhǎng)為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-11 00:13
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問題第1課時(shí)練習(xí)北師大版選修1-1一、選擇題1.函數(shù)y=x-sinx,x∈??????π2,π的最大值是()A.π-1B.π2-1C.πD.π+1[答案]C[解析]f′(x)=1-cosx≥0,
2024-12-06 19:11
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)課后知能檢測(cè)蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】