【摘要】:.解析:先構造函數(shù)有,從而所以:解析:3.:.:解析:一方面:(法二)另一方面::(1)解析:構造函數(shù),得到,再進行裂項,求和后可以得到答案函數(shù)構造形式:,:解析:提示:函數(shù)構造形式:當然本題的證明還
2025-06-28 03:10
【摘要】第一篇:利用導數(shù)處理與不等式有關的問題 利用導數(shù)處理與不等式有關的問題 關鍵詞:導數(shù),不等式,單調(diào)性,最值。 導數(shù)是研究函數(shù)性質(zhì)的一種重要工具。例如求函數(shù)的單調(diào)區(qū)間、求最大(小)值、求函數(shù)的值域...
2024-10-26 15:20
【摘要】第一篇:用放縮法證明與數(shù)列和有關的不等式 用放縮法證明與數(shù)列和有關的不等式 湖北省天門中學薛德斌 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學生綜...
2024-10-27 22:27
【摘要】第一篇:導數(shù)與數(shù)列不等式的綜合證明問題 導數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設m為整數(shù),且...
2024-10-28 18:52
【摘要】數(shù)列型不等式的放縮技巧九法證明數(shù)列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結構,深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下九種:一利用重要不等
2025-06-28 02:18
【摘要】數(shù)列與不等式交匯題型的分析及解題策略【命題趨向】數(shù)列與不等式交匯主要以壓軸題的形式出現(xiàn),試題還可能涉及到與導數(shù)、、前n項和公式以及二者之間的關系、等差數(shù)列和等比數(shù)列、歸納與猜想、數(shù)學歸納法、比較大小、不等式證明、參數(shù)取值范圍的探求,、融合與遷移,考查學生數(shù)學視野的廣度和進一步學習數(shù)學的潛能.近年來加強了對遞推數(shù)列考查的力度,這點應當引起我們高度的重視.如08年北京文20題(12分)中檔偏
2025-03-28 02:51
【摘要】第一篇:用導數(shù)證明不等式 用導數(shù)證明不等式 最基本的方法就是將不等式的的一邊移到另一邊,然后將這個式子令為一個函數(shù)f(x).對這個函數(shù)求導,判斷這個函數(shù)這各個區(qū)間的單調(diào)性,然后證明其最大值(或者是...
2024-10-31 18:37
【摘要】第一篇:導數(shù)證明不等式 導數(shù)證明不等式 一、當x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2024-10-26 09:50
【摘要】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點考查用放縮法證明不等式,這類試題技巧性強,難度大...
2024-10-28 05:08
【摘要】......二輪專題(十一)導數(shù)與不等式證明【學習目標】1.會利用導數(shù)證明不等式.2.掌握常用的證明方法.【知識回顧】一級排查:應知應會,利用新函數(shù)的單調(diào)性或最值解決不等式的證明問題.比如要證明
2025-04-20 00:39
【摘要】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學重要內(nèi)容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導思想和“在知識網(wǎng)絡交匯處”設計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復習參考。一、巧妙構造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2024-08-03 16:02
【摘要】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運算,利用不等式的傳遞性,其優(yōu)點是能迅速地化繁為簡,化難為易,達到事半功倍的效
2025-03-27 12:45
【摘要】精品資源數(shù)列中的不等式恒成立不等式的恒成立問題是學生較難理解和掌握的一個難點,以數(shù)列為載體的不等式恒成立問題的檔次更高、綜合性更強,是高三第二輪復習中不可多得的一個專題.例1:(2003年新教材高考題改編題)設為常數(shù),數(shù)列的通項公式為,若對任意不等式恒成立,求的取值范圍.解:,故等價于. ① ⑴當時,①式即為 ,此式對恒成立,故.(注意小于最小值,為什么不能