freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題(參考版)

2024-10-28 18:52本頁(yè)面
  

【正文】 254。集合B={x|x2-(2m+1)x+m2+m238。x239。252。2x+y+k≤0k=________.(k為常數(shù)),若z=x+3y的最大值為8,則三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟. 17.(10分)(2011y≤x239。239。2-1(x≥0)238。239。ab248。A.(a+b)230。2248。2248。A.a(chǎn)247。230。(n∈N*),bn=log2an,則數(shù)列{bn}7.已知a,b∈R,且ab,則下列不等式中恒成立的是()230。232。1246。C.a(chǎn)n=n2D.a(chǎn)n=n)n26n6.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的乘積等于Tn=231。n247。n231。a11=6,a4+a14=5,則+1,且a等于()16C16D.-563.在數(shù)列{aa-n}中,a1=1,當(dāng)n≥2時(shí),an=1+aan-1n=()nB.n.n24.已知0B.成等比數(shù)列C.各項(xiàng)倒數(shù)成等差數(shù)列D.各項(xiàng)倒數(shù)成等比數(shù)列5.已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是()n1A.a(chǎn)n=2n-1B.a(chǎn)230。1a2La20062點(diǎn)評(píng):本題的關(guān)鍵是根據(jù)題設(shè)條件裂項(xiàng)求和。(2)由a2n+1=anan+1得:an+11=an(an1)\an1=an1(an11)??a21=a1(a11)以上各式兩邊分別相乘得:an+11=anan1La2a1(a11),又a1=2\an+1=anan1La2a1+1(3)要證不等式111122006a++L+11,可先設(shè)法求和:1+1+L+,1a2a2006a1a2a2006再進(jìn)行適當(dāng)?shù)姆趴s。(3)1112a+12006a+L+11。(2)當(dāng)n2且n206。N證明:(1)對(duì)于n206。本題的關(guān)鍵是并項(xiàng)后進(jìn)行適當(dāng)?shù)姆趴s。這里需要對(duì)m進(jìn)行分類討論,(1)當(dāng)m為偶數(shù)(m4)時(shí),1a+1+L+1a=1+(1+1)+L+(1+1)1+3(1113+4+L+m2)4a5ma4a5a6am1am22222=13112+2180。而左邊=1a+1a+L+1=3[111221+23+1+L+2m2(1)m],如果我們把上式中的分母中的177。{an}的前n項(xiàng)和Sn滿足:Sn=2an+(1)n,n179。3)na1nn12anbnn12b2=2+b[log2n]2b\ a2bn2+b[logn](n179。1+1+L+1\1179。1n1an2n1??a1179。n(n179。nan+a得:n1a179。設(shè)數(shù)列{a1n}的各項(xiàng)為正且滿足a1=b(b0),anann163。2,則b=1211=n+1kbn+bnkbnbn+1+bn 所以1b11,因此:1=(11)+...+(11)+1k1+2=k+1n+1bnkbkbkbk1b2b1b1kk所以bkkk+11,所以bn1(n163。k)只需證bk1若k=1,則b121顯然成立。2)nna12an112n所以a*n=n(n206。N).(1)求a2,a3,a4;(2)求數(shù)列{an}的通項(xiàng)an;(3)設(shè)數(shù)列{b1n}滿足b1=2,b12n+1=abn+bn,求證:bn1(n163。=12=1(2n1)點(diǎn)評(píng):本題是函數(shù)、不等式的綜合題,是高考的難點(diǎn)熱點(diǎn)。2247。1246。2時(shí),b531n=4an=22a(5a3131n1)=bn1bn1=2bn1,n1422an1225所以bn2bn122bn2L2n1b31=2n,13n(12n)所以Sn=b1+b2+L+bn4+12++230。bi.證明:當(dāng)n≥2時(shí),Sn<(2-1).i=14分析:比較大小常用的辦法是作差法,而求和式的不等式常用的辦法是放縮法。nn!————①由(Ⅱ)an+1,知:an+1an,n1bn2b122an2所以anaa3Lnaa1a2Ln1 ,因?yàn)閍a=a2aa1=, n≥2, 0an+1an1a2n12222a2a2所以a1a2Lan1aan1n2221n12n=2n————②由①② 兩式可知:bnann!.點(diǎn)評(píng):本題是數(shù)列、超越函數(shù)、導(dǎo)數(shù)的學(xué)歸納法的知識(shí)交匯題,屬于難題,復(fù)習(xí)時(shí)應(yīng)引起注意。2(n+1)bn,所以bn0,n+1b179。N*.(1)當(dāng)n=1時(shí),由已知得結(jié)論成立。(Ⅲ)若a1=2則當(dāng)n≥2時(shí),bnann!.分析:第(1)問是和自然數(shù)有關(guān)的命題,可考慮用數(shù)學(xué)歸納法證明;第(2)問可利用函數(shù)的單調(diào)性;第(3)問進(jìn)行放縮。\ann+1=2n,an=21(2)Q4b114b214b31L4bn1=(an+1)bn,\4(b1+b2+L+bnn)=2nbn2(b1+b2+L+bn)2n=nbn①2(b1+b2+L+bn+bn+1)2(n+1)=(n+1)bn+1②②—①得2bn+12=(n+1)bn+1nbn,即nbn2=(n1)bn+1③\(n+1)bn+12=nbn+2④ ④—③得2nbn+1=nbn+nbn1,即2bn+1=bn+bn1所以數(shù)列{bn}是等差數(shù)列(3)Q1a=11112n+112n+12=設(shè)S=1n2ana+1+L+1,2a3an+1(Ⅰ)0a(Ⅱ)aa2nn+1an1。N)(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{b1n}滿足4b114b24b31L4bn1=(an+1)bn,證明:{bn}是等差數(shù)列;(Ⅲ)證明:1+1a+L+12(n206。a31∴121a2∴11n1+a+1+L+12+111+a21+an點(diǎn)評(píng):把復(fù)雜的問題轉(zhuǎn)化成清晰的
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1