【總結(jié)】第一篇:用放縮法證明與數(shù)列和有關(guān)的不等式 用放縮法證明與數(shù)列和有關(guān)的不等式 湖北省天門中學(xué)薛德斌 數(shù)列與不等式的綜合問(wèn)題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點(diǎn),這類問(wèn)題能有效地考查學(xué)生綜...
2024-10-27 22:27
【總結(jié)】數(shù)列與不等式舉例(放縮法)1、構(gòu)造等差數(shù)列,完成放縮。例1:已知數(shù)列,滿足,。(1)證明:;(2)設(shè)為數(shù)列的前項(xiàng)和,證明:。分析:(1),可證是單調(diào)減少的,即;,猜測(cè)應(yīng)放大為一個(gè)等差數(shù)列,公差為。將化為,即證。(2)由(1)得,所以。兩邊平方得,猜想放大為一個(gè)等差數(shù)列,公差為2。將轉(zhuǎn)化為只需證。練習(xí):1、(2015學(xué)年第一學(xué)期諸暨期末)已
2025-06-25 01:55
【總結(jié)】導(dǎo)數(shù)大題中不等式的證明1.使用前面結(jié)論求證(主要),有三種:,。1、設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),().(1)證明:;(2)當(dāng)時(shí),比較與的大小,并說(shuō)明理由;(3)證明:().2、已知函數(shù).(1)求在上的最大值;(2)若直線為曲線的切線,求實(shí)數(shù)的值;(3)當(dāng)時(shí),設(shè),且,若不等式恒成立,求實(shí)數(shù)的最小值.
2025-03-25 00:40
【總結(jié)】數(shù)列與不等式交匯題型的分析及解題策略【命題趨向】數(shù)列與不等式交匯主要以壓軸題的形式出現(xiàn),試題還可能涉及到與導(dǎo)數(shù)、、前n項(xiàng)和公式以及二者之間的關(guān)系、等差數(shù)列和等比數(shù)列、歸納與猜想、數(shù)學(xué)歸納法、比較大小、不等式證明、參數(shù)取值范圍的探求,、融合與遷移,考查學(xué)生數(shù)學(xué)視野的廣度和進(jìn)一步學(xué)習(xí)數(shù)學(xué)的潛能.近年來(lái)加強(qiáng)了對(duì)遞推數(shù)列考查的力度,這點(diǎn)應(yīng)當(dāng)引起我們高度的重視.如08年北京文20題(12分)中檔偏
2025-03-25 02:51
【總結(jié)】第一篇:導(dǎo)數(shù)與不等式證明(絕對(duì)精華) 二輪專題 (十一)導(dǎo)數(shù)與不等式證明 【學(xué)習(xí)目標(biāo)】 .【知識(shí)回顧】一級(jí)排查:應(yīng)知應(yīng)會(huì) ,利用新函數(shù)的單調(diào)性或最值解決不等式的證明問(wèn)題.比如要證明對(duì)任意x?...
2024-10-31 05:11
【總結(jié)】第一篇:放縮法證明數(shù)列不等式經(jīng)典例題 放縮法證明數(shù)列不等式 主要放縮技能:=2=-nn+1n(n+1)nn(n-1)n-1n 114411===2(-) 22n4n-1(2n+1)(2n...
2024-10-28 01:13
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【總結(jié)】第一篇:放縮法(不等式、數(shù)列綜合應(yīng)用) “放縮法”證明不等式的基本策略 近年來(lái)在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問(wèn)題和...
2024-10-29 04:33
【總結(jié)】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-03-25 02:44
【總結(jié)】第一篇:9導(dǎo)數(shù)情境下的不等式證明2 導(dǎo)數(shù)情境下的不等式證明21、已知函數(shù)g(x)=xlnx,設(shè)0 x2且x1?[-1,0],x2?[1,2]. 2、設(shè)函數(shù)f(x)=x+3bx+3cx有兩個(gè)極...
2024-10-29 11:20
【總結(jié)】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問(wèn)又重點(diǎn)考查用放縮法證明不等式,這類試題技巧性強(qiáng),難度大...
2024-10-28 05:08
【總結(jié)】第一篇:利用放縮法證明數(shù)列不等式的技巧“揭秘” 龍?jiān)雌诳W(wǎng)://. 利用放縮法證明數(shù)列不等式的技巧“揭秘”作者:顧冬生 來(lái)源:《新高考·高三數(shù)學(xué)》2013年第06期 數(shù)列型不等式的證明題,常常...
2024-10-28 22:50
【總結(jié)】第一篇:論文-放縮法證明數(shù)列不等式的基本策略 放縮法證明數(shù)列不等式的基本策略 廣外外校姜海濤 放縮法證明數(shù)列不等式是高考數(shù)學(xué)命題的熱點(diǎn)和難點(diǎn)。所謂放縮法就是利用不等式的傳遞性,對(duì)不等式的局部進(jìn)行...
2024-10-29 07:26