freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

導(dǎo)數(shù)證明不等式(參考版)

2024-10-26 09:50本頁面
  

【正文】 總之,利用導(dǎo)數(shù)證明不等式的關(guān)鍵是“構(gòu)造函數(shù)”,解決問題的依據(jù)是函數(shù)的單調(diào)性,這一方法在高等數(shù)學(xué)中應(yīng)用的非常廣泛,因此,希望同學(xué)門能認(rèn)真對(duì)待,并通過適當(dāng)?shù)木毩?xí)掌握它。2評(píng)注:本題在設(shè)輔助函數(shù)時(shí),考慮到不等式涉及的變量是區(qū)間的兩個(gè)端點(diǎn),因此,設(shè)輔助函數(shù)時(shí)就把其中一個(gè)端點(diǎn)設(shè)為自變量,范例中選用右端點(diǎn),讀者不妨設(shè)為左端點(diǎn)試一試,就更能體會(huì)到其中的奧妙了。(x)0,因此G(x)在區(qū)間(0,+165。)內(nèi)為增函數(shù),于是在x=a 時(shí),F(xiàn)(x)有最小值F(a)=0又ba,所以0g(a)+g(b)2g(a+b)2設(shè)G(x)=g(a)+g(x)2g(a+x)(xa)ln2,則G39。(x)0,當(dāng)xa時(shí),F(xiàn)39。(x)=g39。例3.(2004年全國卷理工22題)已知函數(shù)f(x)=ln(1+x)x,g(x)=xlnx,設(shè)0ab證明:0g(a)+g(b)2g(a+b)(ba)ln2 2證明:設(shè)g(x)=xlnx,g39。評(píng)注:這類非明顯一元函數(shù)式的不等式證明問題,首先變換成某一個(gè)一元函數(shù)式分別在兩個(gè)不同點(diǎn)處的函數(shù)值的大小比較問題,只要將這個(gè)函數(shù)式找到了,通過設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問題。39。2,01+x即要證所以:f(x)0,所以f(x)在[2,+165。ln(1+x)] 即:f(x)=2[x1+xx1,ln(1+x)179。因?yàn)閙x111139。例2:(2001年全國卷理20)已知i,m,n是正整數(shù),且1i163。)時(shí),f39。(x)=11x可得:當(dāng)x206。且limf(x)=0=f(0)+x174。證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,+165。考慮到f(0)=0,要證不等式變?yōu)椋簒0時(shí),f(x)f(0),這只要證明:f(x)在區(qū)間[0,+165。[0,+165。例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。i、m、n為正整數(shù),且1第五篇:談利用導(dǎo)數(shù)證明不等式.談利用導(dǎo)數(shù)證明不等式數(shù)學(xué)組鄒黎華在高考試題中,不等式的證明往往與函數(shù)、導(dǎo)數(shù)、數(shù)列的內(nèi)容綜合,屬于在知識(shí)網(wǎng)絡(luò)的交匯處設(shè)計(jì)的試題,有一定的綜合性和難度,突出體現(xiàn)對(duì)理性思維的考查,特別是利用高中新增內(nèi)容的導(dǎo)數(shù)來證明不等式,體現(xiàn)了導(dǎo)數(shù)的工具,也是與高等數(shù)學(xué)接軌的有力點(diǎn)。(x)故f(x)的最大值在x=1/2處取得,最小值在x=0或1處取得f(0)=0,f(1)=0故f(x)的最小值為零故當(dāng)x∈(0,1)f(x)=xx178。(x)=12x當(dāng)x∈時(shí),f39。0,X∈(0,1)成立令f(x)=xx178。/6sinx是減函數(shù),在0點(diǎn)有最大值0得xx179。/2cosx1是減函數(shù),在0點(diǎn)有最大值0x178。/2+cosx10x0再次用到函數(shù)關(guān)系,令x=0時(shí),x178。/6sinx當(dāng)x=0時(shí),它的值為0對(duì)它求導(dǎo)數(shù)得1x178。當(dāng)1/2因此,F(xiàn)(a)min=F(1/2)=1/40即有當(dāng)000,證明:不等式xx^3/6先證明sinx因?yàn)楫?dāng)x=0時(shí),sinxx=0如果當(dāng)函數(shù)sinxx在x0是減函數(shù),那么它一定因?yàn)閏osx1≤0所以sinxx是減函數(shù),它在0點(diǎn)有最大值0,知sinx再證xx179。=11/(1+x)=x/(x+1)0所以f(x)在(1,+無窮大)上為增函數(shù)f(x)f(1)=1ln2o所以xln(x+12..證明:aa^20其中0F(a)=aa^2F39。第四篇:利用導(dǎo)數(shù)證明不等式利用導(dǎo)數(shù)證明不等式?jīng)]分都沒人答埃。評(píng)注:這類非明顯一元函數(shù)式的不等式證明問題,首先變換成某一個(gè)一元函數(shù)式分別在兩個(gè)不同點(diǎn)處的函數(shù)值的大小比較問題,只要將這個(gè)函數(shù)式找到了,通過設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問題。mn證明:(1+m)n(1+n)m分析:要證(1+
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1