freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)空間向量及其應(yīng)用-資料下載頁

2025-07-28 15:27本頁面

【導(dǎo)讀】①經(jīng)歷向量及其運算由平面向空間推廣的過程;分解及其坐標表示;③掌握空間向量的線性運算及其坐標表示;①理解直線的方向向量與平面的法向量;②能用向量語言表述線線、線面、面面的垂直、平行關(guān)系;③能用向量方法證明有關(guān)線、面位置關(guān)系的一些定理;何問題中的作用。本講內(nèi)容主要涉及空間向量的坐標及運算、空間向量的應(yīng)用。本講是立體幾何的核。觀題借助空間向量求夾角和距離。如位移、速度、力等。②向量加法的平行四邊形法則在空間仍成立。3.平行向量:如果表示空間向量的有向線段所在的直線互相平行或重合,共線時,對應(yīng)的有向線段所在直線可能是同一直線,也可能是。的充要條件是存在實數(shù)。是唯一確定的實數(shù)。示形式;⑵推論的用途:解決三點共線問題。合,注意圖、中的兩個向量的夾角不同,

  

【正文】 2 且 ,1492121 ?? yx ① ,1492222 ?? yx ② 由① - ②得: .04 ))((9 ))(( 21212121 ?????? yyyyxxxx ③ 因為 A、 B 關(guān)于點 M 對稱,所以 x1+ x2=- 4, y1+ y2=2。 代入③得2121 xx yy ?? = 98 ,即直線 l 的斜率為 98 ,所以直線 l 的方程為 y- 1= 98 ( x+2), 即 8x- 9y+25=0。 (經(jīng)檢驗,所求直線方程符合題意 .) ( 2 ) ①由題意可設(shè)所求橢圓的標準方程為 221xyab??(ab0),其半焦距c=6, 2 2 2 2122 1 1 2 1 2 6 5a P F P F? ? ? ? ? ? ?∴ 35a? ,b2=a2c2=9。 所以所求橢圓的標準方程為 22145 9xy?? ② 點 P(5,2)、 F1(6,0)、 F2(6,0)關(guān)于直線 y=x 的對稱點分別為點 P, (2, 5)、 F1, (0, 6)、F2, (0, 6)。 設(shè)所求雙曲線的標準方程為 22112211 1( 0 , 0 )xy abab? ? ? ?。 由題意知,半焦距 c1=6, 2 2 2 21 1 22 1 1 2 1 2 4 5a P F P F????? ? ? ? ? ? ?。 第 27 頁 共 34 頁 1 25a ? ,b12=c12a12=3620=16. 所以所求雙曲線的標準方程為 22120 16xy??。 點評: 本小題主要考查橢圓與雙曲線的基本概念、標準方程、幾何性質(zhì)等基礎(chǔ)知識和基本運算能力。 題型 4:知識交匯題 例 7.( 06 遼寧 ,20) 已知點 11( , )Ax y , 22( , )Bx y 12( 0)xx? 是拋物線 2 2 ( 0)y px p??上的兩個動點 , O 是坐標原點 ,向量 OA ,OB 滿足 O A O B O A O B? ? ?.設(shè)圓 C 的方程為 22 1 2 1 2( ) ( ) 0x y x x x y y y? ? ? ? ? ? (I) 證明線 段 AB 是圓 C 的直徑 。 (II)當圓 C 的圓心到直線 X2Y=0 的距離的最小值為 255時,求 p 的值。 解析: (I)證明 1: 22, ( ) ( )O A O B O A O B O A O B O A O B? ? ? ? ? ? ? 2 2 2 222O A O A O B O B O A O A O B O B? ? ? ? ? ? ? 整理得 : 0OA OB?? 1 2 1 2 0x x y y? ? ? ? ? 設(shè) M(x,y)是以線段 AB 為直徑的圓上的任意一點 ,則 0MA MB?? 即 1 2 1 2( ) ( ) ( ) ( ) 0x x x x y y y y? ? ? ? ? ? 整理得 : 22 1 2 1 2( ) ( ) 0x y x x x y y y? ? ? ? ? ? 故線段 AB 是圓 C 的直徑 證明 2: 22, ( ) ( )O A O B O A O B O A O B O A O B? ? ? ? ? ? ? 2 2 2 222O A O A O B O B O A O A O B O B? ? ? ? ? ? ? 整理得 : 0OA OB?? 1 2 1 2 0x x y y? ? ? ? ?…… ..(1) 第 28 頁 共 34 頁 設(shè) (x,y)是以線段 AB 為直徑的圓上則 即 21121 ( , )y y y y x x x xx x x x??? ? ? ? ? 去分母得 : 1 2 1 2( ) ( ) ( ) ( ) 0x x x x y y y y? ? ? ? ? ? 點 1 1 1 2 2 1 2 2( , ) , ( , ) , ( , ) ( , )x y x y x y x y滿足上方程 ,展開并將 (1)代入得 : 22 1 2 1 2( ) ( ) 0x y x x x y y y? ? ? ? ? ? 故線段 AB 是圓 C 的直徑 證明 3: 22, ( ) ( )O A O B O A O B O A O B O A O B? ? ? ? ? ? ? 2 2 2 222O A O A O B O B O A O A O B O B? ? ? ? ? ? ? 整理得 : 0OA OB?? 1 2 1 2 0x x y y? ? ? ? ?…… (1) 以線段 AB 為直徑的圓的方程為 2 2 2 21 2 1 2 1 2 1 21( ) ( ) [ ( ) ( ) ]2 2 4x x y yx y x x y y??? ? ? ? ? ? ? 展開并將 (1)代入得 : 22 1 2 1 2( ) ( ) 0x y x x x y y y? ? ? ? ? ? 故 線段 AB 是圓 C 的直徑 (II)解法 1:設(shè)圓 C 的圓心為 C(x,y),則 121222xxxyyy?? ???? ????? 221 1 2 22 , 2 ( 0 )y p x y p x p? ? ? 221212 24yyxx p?? 又因 1 2 1 2 0x x y y? ? ? ? 第 29 頁 共 34 頁 1 2 1 2x x y y? ? ? ? ? 221212 24yyyy p?? ? ? 1 2 1 20 , 0x x y y? ? ? ? ? 212 4y y p? ? ?? 2 2 2 21 2 1 21 2 1 2 1 211( ) ( 2 )2 4 4 4x x y yx y y y y y yp p p?? ? ? ? ? ? ? 221 ( 2 )ypp?? 所以圓心的軌跡方程為 222y px p?? 設(shè)圓心 C 到直線 x2y=0 的距離為 d,則 22 221| ( 2 ) 2 || 2 | | 2 2 |5 5 5y p yx y y py ppd p??? ? ?? ? ? 22| ( ) |5y p pp??? 當 y=p 時 ,d 有最小值5p,由題設(shè)得 2555p ? 2p??. 解法 2: 設(shè)圓 C 的圓心為 C(x,y),則 121222xxxyyy?? ???? ????? 221 1 2 22 , 2 ( 0 )y p x y p x p? ? ? 第 30 頁 共 34 頁 221212 24yyxx p?? 又因 1 2 1 2 0x x y y? ? ? ? 1 2 1 2x x y y? ? ? ? ? 221212 24yyyy p?? ? ? 1 2 1 20 , 0x x y y? ? ? ? ? 212 4y y p? ? ?? 2 2 2 21 2 1 21 2 1 2 1 211( ) ( 2 )2 4 4 4x x y yx y y y y y yp p p?? ? ? ? ? ? ? 221 ( 2 )ypp?? 所以圓心的軌跡方程為 222y px p?? 設(shè)直線 x2y+m=0 到直線 x2y=0 的距離為 255,則 2m?? 因 為 x2y+2=0 與 222y px p?? 無公共點 , 所以當 x2y2=0 與 222y px p?? 僅有一個公共點時 ,該點到直線 x2y=0 的距離最小值為255 222 2 0 (2 )2 (3)xyy p x p? ? ??? ??? 將 (2)代入 (3)得 222 2 2 0y p y p p? ? ? ? 第 31 頁 共 34 頁 224 4( 2 2 ) 0p p p? ? ? ? ? ? ??? 解法 3: 設(shè)圓 C 的圓心為 C(x,y),則 121222xxxyyy?? ???? ????? 圓心 C 到 直線 x2y=0 的距離為 d,則 12 12| ( ) |25xx yyd? ??? 221 1 2 22 , 2 ( 0 )y p x y p x p? ? ? 221212 24yyxx p?? 又因 1 2 1 2 0x x y y? ? ? ? 1 2 1 2x x y y? ? ? ? ? 221212 24yyyy p?? ? ? 1 2 1 20 , 0x x y y? ? ? ? ? 212 4y y p? ? ?? 221 2 1 2 2 2 21 2 1 2 1 21| ( ) ( ) || 2 4 ( ) 8 |45 4 5y y y y y y y y p y y ppd p? ? ? ? ? ? ? ?? ? ? 2212( 2 ) 445y y p pp? ? ?? 第 32 頁 共 34 頁 當 122y y p?? 時 ,d 有最小值5p,由題設(shè)得 2555p ? 2p??. 點評:本小題考查了平面向量的基本運算 ,圓與拋物線的方程 .點到直線的距 離公式等基礎(chǔ)知識 ,以及綜合運用解析幾何知識解決問題的能力。 例 8.( 06 重慶文, 22) 如圖,對每個正整數(shù) n ,( , )n n nA x y 是拋物線 2 4xy? 上的點,過焦點 F 的直線 nFA 角拋物線于另一點 ( , )n n nB s t 。 (Ⅰ)試證: 4( 1)nnx s n? ? ? ; (Ⅱ)取 2nnx ? ,并記 nC 為拋物線上分別以 nA與 nB 為切點的兩條切線的交點。 試證: 112 2 2 1nnnF C F C F C ??? ? ? ? ? ?; 證明:(Ⅰ)對任意固定的 1,n? 因為焦點 F( 0,1), 所以可設(shè)直線 nnAB 的方程為 1,ny k x?? 將它與拋物線方程 2 4xy? 聯(lián)立得 : 2 4 4 0nx k x? ? ?, 由一元二次方程根與系數(shù)的關(guān)系得 4( 1)nnx s n? ? ? . (Ⅱ)對任意固定的 1,n? 利用導(dǎo)數(shù)知識易得拋物線 2 4xy? 在 nA 處 的切線的斜率,2n nA xk ? 故 2 4xy? 在 nA 處的切線的方程為: ()2nnnxy y x x? ? ?,?? ① 類似地,可求得 2 4xy? 在 nB 處的切線的方程為: ()2nnnsy t x s? ? ?,?? ② 由 ② - ① 得: 2 2 2 22 2 4 4n n n n n nnn x s x s x sy t x??? ? ? ? ? ?, 第 33 頁 共 34 頁 22 ,2 4 2n n n n n nx s x s x sxx? ? ?? ? ??? ③ 將 ③ 代入 ① 并注意 4nnxs?? 得交點 nC 的坐標為 ( , 1)2nnxs? ?. 由兩點間的距離公式得 : 222 2( ) 4 22 4 4n n n nn x s x sFC ?? ? ? ? ? 2 224 2 22 ( ) ,4 2 2 nnn nn n nxxx FCx x x? ? ? ? ? ? ? ?. 現(xiàn)在 2nnx ? ,利用上述已證結(jié)論并由等比數(shù)列求和公式得: 1 2 1 2122 1 121 1 1 1( ) 2( )21 1 1 1( 2 2 2 ) 2( ) ( 2 1 ) ( 2 2 ) 2 2 1.2 2 2 2nnnn n n n nnFC FC FC x x x x x x? ? ?? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 點評:該題是圓錐曲線與數(shù)列知識交匯的題目。 五.思維總結(jié) 1.注意圓錐曲線的定義在解題中的應(yīng)用,注意解析幾何所研究的問題背景平面幾何的一些性質(zhì); 2.復(fù)習(xí)時要突出“曲線與方程”這一重點內(nèi)容 曲線與方程有兩個方面:一是求曲線方程,二是由方程 研究曲線的性質(zhì) .這兩方面的問題在歷年高考中年年出現(xiàn),且常為壓軸題 .因此復(fù)習(xí)時要掌握求曲線方程的思路和方法,即在建立了平面直角坐標系后,根據(jù)曲線上點適合的共同條件找出動點 P( x, y)的縱坐標 y 和橫坐標 x 之間的關(guān)系式,即 f( x, y) =0 為曲線方程,同時還要注意曲線上點具有條件,確定 x, y 的范圍,這就是通常說的函數(shù)法,它是解析幾何的核心,應(yīng)培養(yǎng)善于運用坐標法解題的能力,求曲線的常用方法有兩類:一類是曲線形狀明確且便于用標準形式,這時用待定系數(shù)法求其方程;另一類是曲線形狀不明確或不便于用標準形式表示,一般可用直接法 、間接代點法、參數(shù)法等求方程。二要引導(dǎo)如何將解析幾何的位置關(guān)系轉(zhuǎn)化的代數(shù)數(shù)量關(guān)系進而轉(zhuǎn)化為坐標關(guān)系,由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強等價轉(zhuǎn)化思想的訓(xùn)練。 3.重視對數(shù)學(xué)思想、方法進行歸納提煉,達到優(yōu)化解題思維、簡化解題過程 ①方程思想,解析幾何的題目大部分都以方程形式給定直線和圓錐曲線,因此把直線與圓錐曲線相交的弦長問題利用韋達定理進行整體處理,就簡化解題運算量。 ②用好函數(shù)思想方
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1