【總結(jié)】平面向量復(fù)習(xí)課教案教學(xué)目標(biāo)1.復(fù)習(xí)向量的概念和向量的線性運(yùn)算、數(shù)量積運(yùn)算。2.復(fù)習(xí)共線向量定理和平面向量基本定理。3.復(fù)習(xí)平面向量的應(yīng)用。教學(xué)重點(diǎn)1.向量的概念和向量的線性運(yùn)算、數(shù)量積運(yùn)算。2.共線向量定理和平面向量基本定理。教學(xué)難點(diǎn)平面向量的應(yīng)用。教學(xué)設(shè)計(jì)一、目標(biāo)展示二、自主學(xué)習(xí)[讀教材·填要點(diǎn)]1.向量的概
2025-04-17 01:00
【總結(jié)】第一篇:《平面向量基本定理》教案 一、教學(xué)目標(biāo): : 了解平面向量基本定理及其意義,理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底...
2024-10-20 21:04
【總結(jié)】第一篇:平面向量基本定理教案 § 教學(xué)目的: (1)了解平面向量基本定理; (2)理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示,初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法;(3)能夠...
2024-11-16 22:11
【總結(jié)】課題:平面向量的加法生活中有向量生活中用向量濟(jì)南香港臺(tái)灣飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和BCABBACC??A濟(jì)南香港臺(tái)灣沈陽(yáng)向量加法的定義:已知向量,,在平面上任取一點(diǎn),作=,作
2025-07-26 00:59
【總結(jié)】?⑴向量及其表示方法?⑵向量的長(zhǎng)度?⑶零向量與單位向量?⑷平行向量?⑸相等向量AC???BCABABCAC(2)飛機(jī)從A到B,再改變方向從B到C,則兩次的位移的和應(yīng)是:???BCABABCAC(
2025-07-24 03:27
【總結(jié)】平面向量的坐標(biāo)運(yùn)算(一)(教案)中衛(wèi)市第一中學(xué)俞清華教學(xué)目標(biāo):知識(shí)與技能:(1)理解平面向量的坐標(biāo)概念;(2)掌握平面向量的坐標(biāo)運(yùn)算.過程與方法:(1)通過對(duì)坐標(biāo)平面內(nèi)點(diǎn)和向量的類比,培養(yǎng)學(xué)生類比推理的能力;(2)通過平面向量坐標(biāo)表示和坐標(biāo)運(yùn)算法則的推導(dǎo)培養(yǎng)學(xué)生歸納、猜想、演繹的能力;(3)通過用代數(shù)方法處理幾何問題,提高學(xué)生用數(shù)形結(jié)合的思想方法解決問題的能力.
2025-04-16 23:06
【總結(jié)】4.平面向量的基本定理、平面向量的坐標(biāo)表示及平面向量的坐標(biāo)運(yùn)算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實(shí)數(shù)與向量的積、兩個(gè)向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長(zhǎng)度、角度和垂直的
2025-05-19 17:09
【總結(jié)】第一篇:平面向量的應(yīng)用 平面向量的應(yīng)用 平面向量是一個(gè)解決數(shù)學(xué)問題的很好工具,它具有良好的運(yùn)算和清晰的幾何意義。在數(shù)學(xué)的各個(gè)分支和相關(guān)學(xué)科中有著廣泛的應(yīng)用。下面舉例說(shuō)明。 一、用向量證明平面幾何...
2024-11-15 03:33
【總結(jié)】設(shè)向量(1)若與垂直,求的值;(2)求的最大值;(3)若,求證:∥.答案:由與垂直,,即,;,最大值為32,所以的最大值為。由得,即,所以∥.來(lái)源:09年高考江蘇卷題型:解答題,難度:容易已知向量的夾角為60°,則的值為 C. D.
2025-01-15 03:33
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2024-11-12 16:44
【總結(jié)】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復(fù)習(xí):1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2025-08-15 21:42
【總結(jié)】《平面向量的加法及其幾何意義》教學(xué)案例《向量的加法運(yùn)算及其幾何意義》選自數(shù)學(xué)(基礎(chǔ)模塊),內(nèi)容包括向量加法的三角形法則、平行四邊形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用。本節(jié)課是學(xué)習(xí)平面向量基本概念之后的一節(jié)比較重要的課,通過類比數(shù)的運(yùn)算,研究向量的運(yùn)算及運(yùn)算律,滲透數(shù)學(xué)建模的思想。向量的加法更是后續(xù)學(xué)習(xí)的鋪墊,因?yàn)橄蛄考臃ㄟ\(yùn)算是平面向量的線性運(yùn)算(向量加法、向量減法、向量數(shù)乘運(yùn)算以及它們
2025-06-07 18:55
【總結(jié)】平面向量一、本章知識(shí)體系?重點(diǎn)及難點(diǎn):向量概念;向量共線的充要條件;平面向量基本定理;向量的數(shù)量積定義,及運(yùn)算程及運(yùn)用;定比分是公式;平移公式及應(yīng)用;用正、余弦定理解三角形。???純?nèi)容:平面向量的概念及運(yùn)算;向量數(shù)量積的,應(yīng)用向量知識(shí)解決向量平行、垂直、角度和長(zhǎng)度等問題,解斜三角形。?例如圖:△AB
2024-11-09 00:20
【總結(jié)】平面向量的實(shí)際背景及基本概念平面向量的線性運(yùn)算——教材解讀山東劉乃東一、要點(diǎn)精講1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如。向量的大小,即向量的模(長(zhǎng)度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個(gè)向量不能比較大小。(2)零向量:長(zhǎng)度為零的向量
2025-08-21 16:13
【總結(jié)】選擇題已知a,b是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量c滿足(a-c)·(b-c)=0,則|c|的最大值是(???).A.1???B.2???C.???D.C???又∵,,,∴
2025-06-25 15:23