【導(dǎo)讀】2.已知四邊形ABCD是平行四邊形,再?gòu)蘑貯B=BC;②∠ABC=90°;3.如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,CE∥BD,DE∥AC.5.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,中點(diǎn),AE平分∠DAM.若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明。究展示”中的結(jié)論是否仍然成立?請(qǐng)分別作出判斷,不需要證明.?!逧是CD的中點(diǎn),∴DE=CE.在△ADE和△NCE中,∴△ADE≌△NCE.∴AD=NC.∴AM=MN=NC+MC=AD+MC.∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∴∠FAB=90°-∠BAE=∠EAD.∴BF=DE,∠F=∠AED.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.EG與FH交于點(diǎn)O.當(dāng)四邊形AEOF與四邊形CGOH的周長(zhǎng)之差為12時(shí),;以此進(jìn)行下去??拋物線的對(duì)稱軸上有一點(diǎn)Q,使△ABQ是以AB為底邊的等腰三角形,易得拋物線的對(duì)稱軸為直線x=2.線x=2于點(diǎn)E,如解圖①.