【導(dǎo)讀】9.設(shè)直線x=t與函數(shù)f=x2,g=lnx的圖象分別交于點(diǎn)M,N,則當(dāng)|MN|達(dá)到最小時(shí)t. 若函數(shù)f在x=-1和x=3處取得極值,試求a,b的值;12.已知函數(shù)f=2x3-6x2+a在[-2,2]上有最小值-37,求a的值及f在[-2,2]上的最。13.已知函數(shù)f=(x-k)ex.求f的單調(diào)區(qū)間;=lg2-2xx+1<1得1<2-2xx+1<10.因?yàn)閤+1>0,所以x+1<2-2x<10x+10,8.C[令y′=4?11.解f′=3x2-2ax+b,而f(-2)=c-2,f=c+54,要使f<2|c|恒成立,只要c+54<2·|c|即可,令f′=0,得x=0或x=2,∴當(dāng)x=-2時(shí),fmin=-40+a=-37,得a=3.k-1)k-1(k-1,