【導(dǎo)讀】2.已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P1,P2,P3在拋物線(xiàn)上,直線(xiàn)l的斜率為22,求證:FA→·FB→=0;10.解如圖所示,拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)為x=-p2,A,B,設(shè)A、B到準(zhǔn)線(xiàn)的距離分別為dA,dB,由拋物線(xiàn)的定義知,|AF|=dA=x1+p2,于是|AB|=x1+x2+p=52p,x1+x2=32p.得k2x2-px+14k2p2=0.∴直線(xiàn)AB的方程為y=2????則y1+y2=4t,y1y2=-4b.=-4bt2+4bt2+b2-4b=b2-4b,令b2-4b=-4,∴b2-4b+4=0,解kFA=-kFB或kFA+kFB=0.,消去x得ky2-2py+kp2=0.化簡(jiǎn),得y2-2pky-p2=0.∴y1y2=-p2,|FA|=|AA1|=x1+p2,|FB|=|BB1|=x2+p2,