【導(dǎo)讀】1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,xf,那么)(0xf是極大。③如果在0x附近的左側(cè)0)(??在區(qū)間(1,4)內(nèi)為減函數(shù),上為增函數(shù),試求實數(shù)a的取值范圍。在點(1,(1)f處的切線斜率為-2,且2. 2ln)(的兩個極值點.。取得極大和極小值的點各1個;
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2020-2020學(xué)年高中數(shù)學(xué)利用導(dǎo)學(xué)研究函數(shù)的極值課后知能檢測新人教B版選修1-1一、選擇題1.已知函數(shù)f(x),x∈R,有唯一極值,且當(dāng)x=1時,f(x)存在極小值,則()A.當(dāng)x∈(-∞,1)時,f′(x)>0;當(dāng)x∈(1,+∞)時,f′(x)<0B.當(dāng)
2024-11-19 03:14
【總結(jié)】極值點教學(xué)目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學(xué)重點:極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)難點:對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內(nèi)容分析:對極大、極小值概念的理
2024-11-20 00:26
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-17 15:21
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在函數(shù)中的應(yīng)用單調(diào)性(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):會利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性并求函數(shù)的單調(diào)區(qū)間.利用函數(shù)的單調(diào)性解決含參問題。教學(xué)重點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系教學(xué)難點:探索函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系預(yù)習(xí)檢測:課堂探究:
2024-12-05 06:44
【總結(jié)】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-函數(shù)的和差積商的導(dǎo)數(shù)教學(xué)目標(biāo)?熟練運用導(dǎo)數(shù)的函數(shù)的和差積商運算法則,并能靈活運用?教學(xué)重點:熟練運用導(dǎo)數(shù)的四則運算法則?教學(xué)難點:商的導(dǎo)數(shù)的運用由定義求導(dǎo)數(shù)(三步法)步驟:;)()()2(00xxfxxfxy???????算比值.lim)3(0xyyx?
2024-11-18 12:15
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》常見函數(shù)的導(dǎo)數(shù)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.能根據(jù)導(dǎo)數(shù)的定義推導(dǎo)部分基本初等函數(shù)的導(dǎo)數(shù)公式;2.能利用導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)數(shù).教學(xué)重點:基本初等函數(shù)的導(dǎo)數(shù)公式的應(yīng)用.課前預(yù)習(xí):1.在上一節(jié)中,我們用割線逼近切線的方法引入了導(dǎo)數(shù)的概念,那么如何求函數(shù)的導(dǎo)數(shù)呢
【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)求函數(shù)的導(dǎo)數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2024-11-17 23:34
【總結(jié)】利用導(dǎo)數(shù)研究函數(shù)的極值(二)一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2024-11-19 10:30
【總結(jié)】第1課時導(dǎo)數(shù)與函數(shù)的單調(diào)性..對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域為I:如果對于定義域I內(nèi)某個區(qū)間D上的
2024-11-19 23:17
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)利用導(dǎo)數(shù)研究(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間2.利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性二:課前預(yù)習(xí)1.(1)作出函數(shù)342???xxy的圖像,并指出其單調(diào)區(qū)間:(2)作出函數(shù)??
2024-11-20 00:30
【總結(jié)】1、(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且x∈(a,b)時,f′(x)0,又f(a)0B.f(x)在[a,b]上單調(diào)遞增,且f(b)0C.f(x)在[a,b]上單調(diào)遞減,且f(b)0D.
2024-11-15 02:40
【總結(jié)】極大值與極小值(2)1、如果在x0附近的左側(cè)f’(x)0,右側(cè)f’(x)0,則f(x0)是極小值;已知函數(shù)f(x)在點x0處是連續(xù)的,則一、判斷函數(shù)極值的方法?導(dǎo)數(shù)為0的點不一定是極值點;?
2024-11-18 08:47
【總結(jié)】舜耕中學(xué)高一數(shù)學(xué)選修1—1導(dǎo)學(xué)案(教師版)編號20等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學(xué)目標(biāo),求函數(shù)單調(diào)區(qū)間,證明單調(diào)性。教學(xué)重點會熟練用求導(dǎo),求函數(shù)單調(diào)區(qū)間,會從導(dǎo)數(shù)的角度解釋增減及增減快慢的情況教學(xué)難點證
2024-12-08 01:49
【總結(jié)】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
【總結(jié)】《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-單調(diào)性》教學(xué)目標(biāo)?原理;??教學(xué)重點:?利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導(dǎo)數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級oyxyox1oyx1xy1?122???