【導(dǎo)讀】如果e1,e2是同一平面內(nèi)的兩個不共線的向量,一對實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.有向量的一組基底.⑴式叫做向量的坐標(biāo)表示.有一對實(shí)數(shù)x、y,使得a=xi+yj.問1:設(shè)的坐標(biāo)與的坐標(biāo)有何關(guān)系?a的坐標(biāo)等于AB的終邊坐標(biāo)減去起點(diǎn)坐標(biāo)。量相應(yīng)坐標(biāo)的和與差.線段終點(diǎn)的坐標(biāo)減去始點(diǎn)的坐標(biāo)。1,3),C(3,4),求點(diǎn)D的坐標(biāo)使這四點(diǎn)。構(gòu)成平行四邊形四個頂點(diǎn)。