【摘要】平面向量共線的坐標(biāo)表示一、求點(diǎn)P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實(shí)數(shù)λ的值.例1已知點(diǎn)A(-2,-3),點(diǎn)B(4,1),延長(zhǎng)AB到P,使|AP|=3|PB|,求點(diǎn)P的坐標(biāo).解:因?yàn)辄c(diǎn)在AB的延長(zhǎng)線上,P為AB的外分點(diǎn),所以AP=λPB,λ0
2024-11-19 17:32
【摘要】平面向量的坐標(biāo)運(yùn)算Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1
2024-11-18 15:55
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=
2024-11-10 00:49
【摘要】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問(wèn)題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個(gè)共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【摘要】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
2024-11-18 16:44
【摘要】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
2024-11-27 23:43