【摘要】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運(yùn)算。學(xué)習(xí)過(guò)程[來(lái)源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁(yè)~79頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運(yùn)算:①已知軸l,取單位向
2024-11-27 23:46
【摘要】§向量的減法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、如果把兩個(gè)向量的始點(diǎn)放在一起,則這兩個(gè)向量的差是以為起點(diǎn),為終點(diǎn)的向量。2、一個(gè)向量BA等于它的終點(diǎn)相對(duì)于點(diǎn)O的位置向量___減去它的始點(diǎn)相對(duì)于點(diǎn)O的位置向量___,或簡(jiǎn)記為
2024-11-18 16:44
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-17 19:47
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過(guò)實(shí)例了解如何用坐標(biāo)表示兩個(gè)共線向量,以及兩直線平行與兩向量共線的判定.(易混點(diǎn))2.理解用坐標(biāo)表示的平面向量共線的條件,并會(huì)應(yīng)用.(重點(diǎn))3.會(huì)根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點(diǎn))1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【摘要】一、向量有關(guān)知識(shí)復(fù)習(xí)(1)向量共線的充要條件:ab與共線??0,????bRba??(2)向量垂直的充要條件:??0,00??????bababa(3)兩向量相等充要條件:,baba???且方向相同。11221221(,)(,)//0axybx
2024-11-18 12:09
【摘要】§3.空間向量運(yùn)算的坐標(biāo)表示知識(shí)點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【摘要】及坐標(biāo)表示(第2課時(shí))學(xué)習(xí)目標(biāo):(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;兩個(gè)非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設(shè)當(dāng)且僅當(dāng)存在實(shí)數(shù),使?ba??//ab
2024-11-18 08:49
【摘要】教學(xué)設(shè)計(jì)一、課前延伸預(yù)習(xí)檢測(cè):判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點(diǎn)必在一條直線上。()(3)若干個(gè)向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【摘要】計(jì)算下列各式a?4)3)(1(??ababa?????????)(2)(3)2(a?12??b?5?)23()32)(3(cbacba???????????cba???25????課前小測(cè)))(())()(4(2121bcttbctt?????ctbt2122??復(fù)習(xí)思考:向量的加法
2024-11-18 12:10
【摘要】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【摘要】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來(lái)解決向量的共線問(wèn)題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問(wèn)題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【摘要】角的概念的推廣沈陽(yáng)二中數(shù)學(xué)組初步理解用“旋轉(zhuǎn)”定義角的概念;理解“正角”、“負(fù)角”、“零角”、“象限角”、“終邊相同的角”的含義掌握所有與α角終邊相同的角(包括α角)的表示方法。學(xué)習(xí)
2024-11-17 12:00
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)跟蹤檢測(cè)新人教A版必修4一、選擇題1.O是△ABC內(nèi)一點(diǎn),且|OA→|=|OB→|=|OC→|,則O是△ABC的()A.重心B.內(nèi)心C.外心D.垂心解析:由于|OA→|=|OB→|=|OC→|,即OA=OB=OC,所以O(shè)點(diǎn)到
2024-12-08 07:03
【摘要】[精練精析]向量加法及其幾何意義素能綜合檢測(cè)[探究創(chuàng)新]9.(10分)如圖,用兩根繩子把重10N的物體W吊在水平桿子AB上,∠ACW=150°,∠BCW=120°,求A和B處所受力的大?。ɡK子的重量忽略不計(jì)).[精練精析]向量減法運(yùn)算及其幾何意義
2024-11-15 21:17