【摘要】自學目標1、掌握平行向量基本定理;2、掌握軸上向量的座標及其運算。學習過程[來源:.Com]一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標及其運算:①已知軸l,取單位向
2024-11-27 23:46
【摘要】§向量的減法(課前預習案)班級:___姓名:________編寫:一、新知導學1、如果把兩個向量的始點放在一起,則這兩個向量的差是以為起點,為終點的向量。2、一個向量BA等于它的終點相對于點O的位置向量___減去它的始點相對于點O的位置向量___,或簡記為
2024-11-18 16:44
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數(shù),使得ab
2024-11-17 19:47
【摘要】第二章平面向量平面向量的基本定理及坐標表示平面向量共線的坐標表示1.通過實例了解如何用坐標表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標表示的平面向量共線的條件,并會應用.(重點)3.會根據(jù)平面向量的坐標判斷向量是否共線.(難點)1.平面向量共線的坐標表示2
2024-11-19 19:09
【摘要】一、向量有關知識復習(1)向量共線的充要條件:ab與共線??0,????bRba??(2)向量垂直的充要條件:??0,00??????bababa(3)兩向量相等充要條件:,baba???且方向相同。11221221(,)(,)//0axybx
2024-11-18 12:09
【摘要】§3.空間向量運算的坐標表示知識點一空間向量的坐標運算設a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【摘要】及坐標表示(第2課時)學習目標:(3)會根據(jù)向量的坐標,判斷向量是否共線.(1)理解平面向量的坐標的概念;(2)掌握平面向量的坐標運算;兩個非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設當且僅當存在實數(shù),使?ba??//ab
2024-11-18 08:49
【摘要】教學設計一、課前延伸預習檢測:判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點必在一條直線上。()(3)若干個向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【摘要】計算下列各式a?4)3)(1(??ababa?????????)(2)(3)2(a?12??b?5?)23()32)(3(cbacba???????????cba???25????課前小測))(())()(4(2121bcttbctt?????ctbt2122??復習思考:向量的加法
2024-11-18 12:10
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內所
2024-11-17 15:05
【摘要】2.平面向量的坐標運算情景:我們知道,在直角坐標平面內,每一個點都可用一對有序實數(shù)(即它的坐標)表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標,應如何進行運算?1.兩個向量和的坐標等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【摘要】平面向量共線的坐標表示學習目標:1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【摘要】角的概念的推廣沈陽二中數(shù)學組初步理解用“旋轉”定義角的概念;理解“正角”、“負角”、“零角”、“象限角”、“終邊相同的角”的含義掌握所有與α角終邊相同的角(包括α角)的表示方法。學習
2024-11-17 12:00
【摘要】【優(yōu)化指導】2021年高中數(shù)學跟蹤檢測新人教A版必修4一、選擇題1.O是△ABC內一點,且|OA→|=|OB→|=|OC→|,則O是△ABC的()A.重心B.內心C.外心D.垂心解析:由于|OA→|=|OB→|=|OC→|,即OA=OB=OC,所以O點到
2024-12-08 07:03
【摘要】[精練精析]向量加法及其幾何意義素能綜合檢測[探究創(chuàng)新]9.(10分)如圖,用兩根繩子把重10N的物體W吊在水平桿子AB上,∠ACW=150°,∠BCW=120°,求A和B處所受力的大?。ɡK子的重量忽略不計).[精練精析]向量減法運算及其幾何意義
2024-11-15 21:17