【摘要】平面向量的坐標(biāo)運算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.3.正確理解向量坐標(biāo)的概念,要把點的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41
【摘要】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算考查知識點及角度難易度及題號基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標(biāo)為()A.(1,4)
2024-11-19 17:32
【摘要】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2024-08-14 18:26
【摘要】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點E是面A’C’的中心,求下列各式中
2024-11-18 00:48
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的加法課后訓(xùn)練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個數(shù)為().A.2B.3C.
2024-12-03 03:14
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的減法課后訓(xùn)練北師大版必修4"1.AC可以寫成:①AOOC?;②AOOC?;③OAOC?;④OCOA?.其中正確的是().A.①②B.②③C.③④D.①④2.如圖,D,E,F(xiàn)分別是
【摘要】平面向量數(shù)量積的應(yīng)用平面向量的數(shù)量積及其性質(zhì)是平面向量的重點內(nèi)容,在平面向量中占重要的地位.利用平面向量的數(shù)量積及其性質(zhì)可以處理向量的許多問題.下面舉例歸納說明.一、求向量的長度(模)求向量的長度的依據(jù)是:①2aaa?·;②設(shè)?a(),xy,則a22??xy.例1已知5ab??,向量a與b的夾角為π3,
2024-12-05 06:36
【摘要】平面向量的運算與應(yīng)用平面向量是數(shù)學(xué)中重要的基本概念之一,向量知識是進(jìn)一步學(xué)習(xí)數(shù)學(xué)、物理及其它科學(xué)的有效工具,尤其是向量加減法,向量的倍積與數(shù)量積的運算律在運算中扮演著重要角色.一、向量的幾何運算向量運算有著豐富的幾何背景,三角形法則與平行四邊形法則是向量加減法運算的最基本而直觀的運算方法.例1已知點G是△ABC的重心,O為平面
2024-11-19 23:17
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-18 12:17
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【摘要】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【摘要】高中數(shù)學(xué)必修4知識點總結(jié)平面向量知識點歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大小.②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0
2025-04-04 05:10
【摘要】高中數(shù)學(xué)必修4平面向量知識點歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的
2024-08-20 09:32
【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【摘要】考點解讀:平面向量的線性運算向量的線性運算是向量的基礎(chǔ)部分,考查主要在選擇題、填空題形式出現(xiàn),側(cè)重于對向量的基本概念、向量運算的關(guān)系的考查;在解答題中側(cè)重于向量與其他章節(jié)的綜合考查,預(yù)計高考中向量的內(nèi)容所占的比重還會較大.下面對平面向量的線性運算的考點作簡單的探究:考點一、平面向量基本概念的考查:例1、給出下列命題:⑴兩個向量,當(dāng)且僅當(dāng)它