【總結(jié)】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§3從速度的倍數(shù)到數(shù)乘向量3.2平面向量基本定理,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十...
2025-10-13 18:50
【總結(jié)】平面向量的線性運(yùn)算例1一輛汽車從A點(diǎn)出發(fā)向西行駛了100公里到達(dá)B點(diǎn),然后又改變方向向西偏北050走了200公里到達(dá)C點(diǎn),最后又改變方向,向東行駛了100公里到達(dá)D點(diǎn)。(1)作出向量AB,BC,CD;(2)求AD。分析:解答本題應(yīng)首先確立指向標(biāo),然后再根據(jù)行駛方向確定出有關(guān)向量,進(jìn)而求解。解析:(
2024-12-05 06:40
【總結(jié)】§2.平面向量的坐標(biāo)運(yùn)算【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、會(huì)用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。2、培養(yǎng)細(xì)心、耐心的學(xué)習(xí)習(xí)慣,提高分析問題的能力?!局R(shí)梳理、雙基再現(xiàn)】1、兩個(gè)向量和差的坐標(biāo)運(yùn)算已知:??1122(,),(,)axybxx,?為一實(shí)數(shù)則?????122
2024-12-02 08:37
【總結(jié)】平面向量應(yīng)用易錯(cuò)辯析運(yùn)用向量知識(shí)解題??墒盏交睘楹?、化難為易的神奇功效,隨著新教材的逐步實(shí)施,它已成為高考數(shù)學(xué)的新寵。但學(xué)生在初學(xué)這部分內(nèi)容時(shí),往往會(huì)出現(xiàn)這樣或那樣的錯(cuò)誤,現(xiàn)列舉幾種常見錯(cuò)誤,以期起到防患于未然的作用。一、忽略共線向量致誤例1、已知同一平面上的向量a、b、c兩兩所成的角相等,并且1||?a,2||?b,3||
2024-12-05 01:51
【總結(jié)】雙基限時(shí)練(二十)向量平行的坐標(biāo)表示一、選擇題1.已知a=(-1,2),b=(2,y),若a∥b,則y的值是()A.1B.-1C.4D.-4解析由a∥b,得(-1)·y=2·2=4,∴y=-4,故選D.答案D2.已知A(k,1
2024-12-04 23:45
【總結(jié)】雙基限時(shí)練(二十一)從力做的功到向量的數(shù)量積一、選擇題1.下列命題①a+(-a)=0;②(a+b)+c=a+(b+c);③(a2b)2c=a2(b2c);④(a+b)2c=a2c+b2()A.0個(gè)B.
2024-12-04 20:39
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算1.下列說法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:向量的坐標(biāo)是其終點(diǎn)坐標(biāo)減去起點(diǎn)對(duì)
2024-11-19 17:32
【總結(jié)】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.3.正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個(gè)向量分解為兩個(gè)互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運(yùn)算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點(diǎn)坐標(biāo)為()A.(1,4)
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中
2024-11-18 00:48
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)向量的加法課后訓(xùn)練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個(gè)數(shù)為().A.2B.3C.
2024-12-03 03:14
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)向量的減法課后訓(xùn)練北師大版必修4"1.AC可以寫成:①AOOC?;②AOOC?;③OAOC?;④OCOA?.其中正確的是().A.①②B.②③C.③④D.①④2.如圖,D,E,F(xiàn)分別是