【總結(jié)】1§3向量組的線性相關(guān)性主要內(nèi)容向量的線性組合向量組的線性相關(guān)性向量組的秩極大線性無(wú)關(guān)組方程組與向量組的關(guān)系的進(jìn)一步研究線性相關(guān)性的判定方法目錄下頁(yè)返回結(jié)束向量組的性質(zhì)2一、向量的線性組合以下討論我們總是在一固定的數(shù)域P上的n維
2025-09-20 19:09
【總結(jié)】一、主要內(nèi)容1、向量組的線性相關(guān)性,向量組的秩及找一個(gè)最大無(wú)關(guān)組,并用該最大無(wú)關(guān)線性無(wú)關(guān)組表示向量組中的其余向量第四章向量組的線性相關(guān)性.,.,,,21個(gè)分量稱為第個(gè)數(shù)第個(gè)數(shù)稱為該向量的分量這維向量數(shù)組稱為所組成的個(gè)有次序的數(shù)iainnaaanin?分
2025-10-08 21:15
【總結(jié)】1第三章維向量空間§向量組的極大線性無(wú)關(guān)組n§向量組的極大線性無(wú)關(guān)組二、向量組的秩一、極大線性無(wú)關(guān)組的概念三、如何求向量組的極大無(wú)關(guān)組及線性組合關(guān)系2第三章維向量空間§向量組
2025-05-14 22:58
【總結(jié)】第二節(jié)向量組的秩Ch4向量空間定理1性質(zhì)1:性質(zhì)3:性質(zhì)2:定理4:定義1最大線性無(wú)關(guān)向量組最大無(wú)關(guān)組一、最大(線性)無(wú)關(guān)向量組一、最大(線性)無(wú)關(guān)向量組秩定理1二、矩陣與向量組秩的關(guān)系二、矩陣與向量組秩的關(guān)系結(jié)論:說(shuō)明:定理4:最大無(wú)關(guān)組B為行最簡(jiǎn)形矩陣定理2
2025-01-19 09:24
【總結(jié)】2020年12月18日星期五復(fù)習(xí)引入在平面直角坐標(biāo)系內(nèi),分別取與軸、軸方向相同的兩個(gè)單位向量、為基底,對(duì)于任意一個(gè)向量,由平面向量基本定理知,有且只有一對(duì)實(shí)數(shù)、,使得我們把叫做向量
2025-11-02 21:08
【總結(jié)】一、向量組的極大線性無(wú)關(guān)組中的向量組考慮4R包含多少個(gè)向量?最多可以其中線性無(wú)關(guān)的部分組TTTT)1,2,2,1(,)4,2,4,2(,)1,1,4,2(,)2,1,2,1(4321?????????????123,,,...,r????如果一個(gè)向量組的部分組滿足以下兩個(gè)條件
2025-09-20 17:56
【總結(jié)】第二章§3&理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識(shí)點(diǎn)一知識(shí)點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三3.1&空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理學(xué)生小李
2025-06-12 19:01
【總結(jié)】,滿足個(gè)向量中能選出,如果在設(shè)有向量組rrAA???,,,21?定義1線性無(wú)關(guān);)向量組(rA???,,,:1210?關(guān),個(gè)向量的話)都線性相中有個(gè)向量(如果中任意)向量組(112??rArA.的秩稱為向量組數(shù)最大無(wú)關(guān)
2025-08-01 14:36
【總結(jié)】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運(yùn)算課前自主預(yù)習(xí)課堂典例講練課后強(qiáng)化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-19 16:22
【總結(jié)】平面向量的正交分解及坐標(biāo)表示的教學(xué)案例一.案例要解決的教學(xué)困惑:在高中數(shù)學(xué)教材中,很多知識(shí),如果學(xué)生記住結(jié)論,學(xué)生就能解決一系列的數(shù)學(xué)題目。對(duì)于這類(lèi)知識(shí)的教學(xué)一直困擾我很久。到底是簡(jiǎn)單地讓學(xué)生記住一個(gè)公式,一個(gè)結(jié)論,或是純粹地模仿技能,還是要讓學(xué)生通過(guò)不斷的思考、探究、實(shí)踐,摸索總結(jié)出公式和結(jié)論呢?新的《普通數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于對(duì)概念、結(jié)論和技能的記憶、模
2025-04-17 01:00
【總結(jié)】1212112212,,,,,,,,,,.nnnnnaaakkkakakakaaaa????定義設(shè)是一組向量,是一組實(shí)數(shù),則所組成的向量叫做向量組的一個(gè)線性組合四共線、共面的向量組下一頁(yè)返回
2025-07-22 21:21
【總結(jié)】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2025-11-09 11:25
【總結(jié)】空間向量的正交分解及其坐標(biāo)運(yùn)算空間直角坐標(biāo)系.向量的直角坐標(biāo)表示及運(yùn)算.一、空間向量的坐標(biāo)分解給定一個(gè)空間坐標(biāo)系和向量,且設(shè)為空間兩兩垂直的向量,p,,ijkxyzOpkijPQ,,,zkOQ實(shí)數(shù)存在所確定的平面上在,,,,
2025-11-09 00:51
【總結(jié)】《線性代數(shù)》下頁(yè)結(jié)束返回一、矩陣的秩的概念二、初等變換求矩陣的秩三、向量組方面的一些重要方法下頁(yè)第7節(jié)矩陣的秩及向量組的極大無(wú)關(guān)組求法①向量組的秩的計(jì)算方法②極大無(wú)關(guān)組的確定方法③用極大無(wú)關(guān)組表示其它向量的方法注意:第6-7節(jié)與教材內(nèi)容及次序有所不同,請(qǐng)作筆記.《線性代數(shù)》下頁(yè)
2025-10-09 18:11
【總結(jié)】§3向量組的秩12,,,rAAr???設(shè)有向量組,若在中能選出個(gè)向量,滿足:定義:0121:,,,rA???()向量組線性無(wú)關(guān);211ArAr??()向量組中任意個(gè)向量(如果中有
2025-01-19 14:58