【總結(jié)】平面向量的正交分解及坐標(biāo)表示一、向量的分解1e2eaADFE量的分解、通過(guò)幾何畫(huà)板研究向1的分解圖線性和與為、請(qǐng)畫(huà)212eea1:,1????μλDCBACμABλAD共線當(dāng)且僅當(dāng)、、三點(diǎn)則、如圖令例ABCD已知O,A,B是平面上的三個(gè)點(diǎn),直線AB上有一點(diǎn)C,滿(mǎn)足
2025-07-25 06:26
【總結(jié)】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量的正交分解及其坐標(biāo)表示,第一頁(yè),編輯于星期六:點(diǎn)三十八分。,第二頁(yè),編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁(yè),編輯于星期...
2024-10-22 19:05
【總結(jié)】第二章第2課時(shí)一、選擇題1.設(shè)P(-5,1,-2),A(4,2,-1),若OP→=AB→,則點(diǎn)B應(yīng)為()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)[答案]A[解析]∵OP→=AB→=OB→-OA→,
2024-12-03 00:16
【總結(jié)】平面向量的正交分解及坐標(biāo)表示復(fù)習(xí)平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使a=λ1e1+λ2e2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不唯一,關(guān)鍵
2025-07-24 04:29
【總結(jié)】回顧復(fù)習(xí)一、共線向量:1.共線向量:如果表示向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.a(chǎn)平行于b記作//ab.規(guī)定:o與任一向量a是共線向量.2、共線向量定理對(duì)任意兩個(gè)向量a,b(a≠
2025-08-16 00:41
【總結(jié)】理解空間向量基本定理,并能用基本定理解決一些幾何問(wèn)題.理解基底、基向量及向量的線性組合的概念.掌握空間向量的坐標(biāo)表示,能在適當(dāng)?shù)淖鴺?biāo)系中寫(xiě)出向量的坐標(biāo).空間向量的正交分解及其坐標(biāo)表示【課標(biāo)要求】【核心掃描】空間向量基本定理.(重點(diǎn))用基底表示已知向量.(難點(diǎn))在不同坐標(biāo)系中向量坐標(biāo)的相對(duì)性.(易錯(cuò)
2024-11-30 12:27
【總結(jié)】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測(cè)目錄下一頁(yè)上一頁(yè)末頁(yè)首頁(yè)章首課前練習(xí):已知正△ABC的邊長(zhǎng)為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會(huì)
2025-07-23 07:12
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-09 01:17
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長(zhǎng)度(模)公式注意:此公式的幾何意義是表示長(zhǎng)方體的對(duì)角線的長(zhǎng)度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時(shí),同向;(2)當(dāng)
2024-11-12 16:42
【總結(jié)】《》教案一、教學(xué)目標(biāo):1.知識(shí)目標(biāo):了解向量與平面平行的意義,掌握它們的表示方法。理解共線向量定理、共面向量定理和空間向量分解定理,理解空間任一向量可用空間不共面的三個(gè)已知向量唯一線性表示,會(huì)在簡(jiǎn)單問(wèn)題中選用空間三個(gè)不共面向量作為基底表示其他向量。會(huì)用空間向量的基本定理解決立體幾何中有關(guān)的簡(jiǎn)單問(wèn)題。2.能力目標(biāo):通過(guò)空間向量分解定理的得出過(guò)程,體會(huì)由特殊到一般,由低維到高維的思想
2025-04-17 07:36
【總結(jié)】設(shè)是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()ABCD21ee??,2121eeee??????和12216423eeee????
2025-07-24 04:31
【總結(jié)】高二數(shù)學(xué)教學(xué)設(shè)計(jì)——設(shè)計(jì)人:董永興教材分析:引入空間直角坐標(biāo)系,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點(diǎn),為培養(yǎng)學(xué)生思維提供了更廣闊的空間,在學(xué)生學(xué)習(xí)了空間向量的幾何形式和運(yùn)算,以及基本定理的基礎(chǔ)上進(jìn)一步學(xué)習(xí)空間向量的坐標(biāo)運(yùn)算及其規(guī)律,是平面向量的坐標(biāo)運(yùn)算在空間推廣和拓展,為運(yùn)用向量坐標(biāo)運(yùn)算解
2025-04-16 12:24
【總結(jié)】空間向量的坐標(biāo)運(yùn)算——空間直角坐標(biāo)系.空間向量的直角坐標(biāo)運(yùn)算.單位正交基底,空間直角坐標(biāo)系,向量的坐標(biāo)xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 12:14
【總結(jié)】空間向量基本定理課程目標(biāo)學(xué)習(xí)脈絡(luò)1.了解空間向量基本定理及其意義,會(huì)在簡(jiǎn)單問(wèn)題中選用空間三個(gè)不共面的向量作為基底表示其他向量.2.使學(xué)生體會(huì)從平面到空間的過(guò)程,進(jìn)一步培養(yǎng)學(xué)生對(duì)空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個(gè)不共面的向量,a是空間任一
2024-11-16 23:22