【總結(jié)】學(xué)習(xí)目標(biāo)1理解零點(diǎn)的概念。2學(xué)會求函數(shù)的零點(diǎn)。3判斷零點(diǎn)所在區(qū)間。定義:對于函數(shù)y=f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)。(一)函數(shù)的零點(diǎn)方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)有零點(diǎn)等價關(guān)系函數(shù)y=f(x)的圖象與x軸有交點(diǎn)
2025-11-02 21:09
【總結(jié)】總體內(nèi)容展示:1、教材及地位分析2、學(xué)情分析3、教學(xué)目標(biāo)分析4、教法分析5、教學(xué)過程展示6、教學(xué)總結(jié)與反思教材地位:必修一第三章“函數(shù)與方程”是高中數(shù)學(xué)的新增內(nèi)容,是近年來高考關(guān)注的熱點(diǎn).本章函數(shù)與方程是中學(xué)數(shù)學(xué)的核
2025-08-01 18:01
【總結(jié)】《方程的根與函數(shù)的零點(diǎn)》教學(xué)設(shè)計及教學(xué)反思一、背景分析1、學(xué)習(xí)任務(wù)分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是初等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。?原因是要用函數(shù)的觀點(diǎn)統(tǒng)帥中學(xué)數(shù)學(xué),,解方程的問題就變成了求函數(shù)的零點(diǎn)問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由
2025-04-19 05:40
【總結(jié)】3.1函數(shù)與方程3.方程的根與函數(shù)的零點(diǎn)[學(xué)習(xí)目標(biāo)],會求函數(shù)的零點(diǎn)..函數(shù)的零點(diǎn)與方程的根的聯(lián)系.[知識鏈接]考察下列一元二次方程與對應(yīng)的二次函數(shù):(1)方程x2-2x-3=0與函數(shù)y=x2-2x-3;(2)方程x2-2x+1=0與函數(shù)y=x2-2x+1;(3)方程x
2025-11-28 21:18
【總結(jié)】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實(shí)數(shù)根x1=-1,x2=3x1=x2=1無實(shí)數(shù)根(-1,0)、(3,0)(1,0)無交點(diǎn)x2-2x-
2025-11-15 13:41
【總結(jié)】函數(shù)與方程一、考點(diǎn)聚焦1.函數(shù)零點(diǎn)的概念對于函數(shù),我們把使的實(shí)數(shù)x叫做函數(shù)的零點(diǎn),注意以下幾點(diǎn):(1)函數(shù)的零點(diǎn)是一個實(shí)數(shù),當(dāng)函數(shù)的自變量取這個實(shí)數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點(diǎn)也就是函數(shù)的圖象與x軸的交點(diǎn)的橫坐標(biāo)。(3)一般我們只討論函數(shù)的實(shí)數(shù)零點(diǎn)。(4)求零點(diǎn)就是求方程的實(shí)數(shù)根。2、函數(shù)零點(diǎn)的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-16 02:09
【總結(jié)】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點(diǎn)5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-16 22:23
【總結(jié)】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點(diǎn)總結(jié):?方程的根?方程的根1.設(shè)為實(shí)數(shù),函數(shù),當(dāng)什么范圍內(nèi)取值時,曲線與軸僅有一個交點(diǎn)。2、已知函數(shù)f(x)=-x+8x,g(x)=6lnx+m(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點(diǎn)?若
2025-04-16 23:50
【總結(jié)】第二課時方程的根與函數(shù)的零點(diǎn)(習(xí)題課)方程的根與函數(shù)的零點(diǎn)知識回顧?y=f(x)有零點(diǎn)有哪些等價說法?函數(shù)y=f(x)有零點(diǎn)方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有公共點(diǎn).對于函數(shù)y=f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)
2025-04-21 19:07
【總結(jié)】第三章函數(shù)的應(yīng)用§函數(shù)與方程3.方程的根與函數(shù)的零點(diǎn)課時目標(biāo)元二次方程根的存在性及根的個數(shù),理解二次函數(shù)的圖象與x軸的交點(diǎn)和相應(yīng)的一元二次方程根的關(guān)系.念以及函數(shù)零點(diǎn)與方程根的聯(lián)系..1.函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)和相應(yīng)的ax2+bx+c=0(a≠0)
【總結(jié)】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或方程的根[典例](2022·山東高考)(13分)設(shè)函數(shù)+c(e=28…是自然對數(shù)的底數(shù),c∈R).
2025-08-05 03:43
【總結(jié)】函數(shù)的零點(diǎn)問題函數(shù)零點(diǎn)是新課標(biāo)教材的新增內(nèi)容之一,縱觀近幾年全國各地的高考試題,經(jīng)常出現(xiàn)一些與零點(diǎn)有關(guān)的問題,它可以以選擇題、填空題的形式出現(xiàn),也可以在解答題中與其它知識交匯后閃亮登場,可以說”零點(diǎn)”成為了高考新的熱點(diǎn)、亮點(diǎn)和生長點(diǎn).高考地位方程0)(?xf方程的實(shí)數(shù)根與
2025-11-13 01:56
【總結(jié)】方程的根與函數(shù)的零點(diǎn)一、選擇題1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應(yīng)值表x1234567f(x)136.13615.552-210.88-88-6411.238由表可知函數(shù)f(x)存在零點(diǎn)的區(qū)間有(
【總結(jié)】函數(shù)的零點(diǎn)畫出函數(shù)圖像,指出x取哪些值時,y=0?y0?y0?2y=x-2x-3xoy-13(1)再求方程的實(shí)數(shù)根,觀察函數(shù)與方程的聯(lián)系?2x-2x-3=0我們把使二次函數(shù)
2025-10-25 17:56
【總結(jié)】和函數(shù)的零點(diǎn)XYAMBO10m(1,40/3)(0,10)?思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-
2025-03-12 14:48