【總結】學習目標1理解零點的概念。2學會求函數(shù)的零點。3判斷零點所在區(qū)間。定義:對于函數(shù)y=f(x),使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點。(一)函數(shù)的零點方程f(x)=0有實數(shù)根函數(shù)y=f(x)有零點等價關系函數(shù)y=f(x)的圖象與x軸有交點
2024-11-11 21:09
【總結】總體內容展示:1、教材及地位分析2、學情分析3、教學目標分析4、教法分析5、教學過程展示6、教學總結與反思教材地位:必修一第三章“函數(shù)與方程”是高中數(shù)學的新增內容,是近年來高考關注的熱點.本章函數(shù)與方程是中學數(shù)學的核
2025-08-01 18:01
【總結】《方程的根與函數(shù)的零點》教學設計及教學反思一、背景分析1、學習任務分析函數(shù)與方程是中學數(shù)學的重要內容,既是初等數(shù)學的基礎,又是初等數(shù)學與高等數(shù)學的連接紐帶。?原因是要用函數(shù)的觀點統(tǒng)帥中學數(shù)學,,解方程的問題就變成了求函數(shù)的零點問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由
2025-04-19 05:40
【總結】3.1函數(shù)與方程3.方程的根與函數(shù)的零點[學習目標],會求函數(shù)的零點..函數(shù)的零點與方程的根的聯(lián)系.[知識鏈接]考察下列一元二次方程與對應的二次函數(shù):(1)方程x2-2x-3=0與函數(shù)y=x2-2x-3;(2)方程x2-2x+1=0與函數(shù)y=x2-2x+1;(3)方程x
2024-12-07 21:18
【總結】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實數(shù)根x1=-1,x2=3x1=x2=1無實數(shù)根(-1,0)、(3,0)(1,0)無交點x2-2x-
2024-11-24 13:41
【總結】函數(shù)與方程一、考點聚焦1.函數(shù)零點的概念對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點,注意以下幾點:(1)函數(shù)的零點是一個實數(shù),當函數(shù)的自變量取這個實數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點也就是函數(shù)的圖象與x軸的交點的橫坐標。(3)一般我們只討論函數(shù)的實數(shù)零點。(4)求零點就是求方程的實數(shù)根。2、函數(shù)零點的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-16 02:09
【總結】利用導數(shù)研究方程的根和函數(shù)的零點5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調區(qū)間;(Ⅲ)令,設函數(shù)在處取得極值,記點,證明:線段與曲線存在異于、的公共點;5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-16 22:23
【總結】利用導數(shù)研究方程的根和函數(shù)的零點總結:?方程的根?方程的根1.設為實數(shù),函數(shù),當什么范圍內取值時,曲線與軸僅有一個交點。2、已知函數(shù)f(x)=-x+8x,g(x)=6lnx+m(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點?若
2025-04-16 23:50
【總結】第二課時方程的根與函數(shù)的零點(習題課)方程的根與函數(shù)的零點知識回顧?y=f(x)有零點有哪些等價說法?函數(shù)y=f(x)有零點方程f(x)=0有實數(shù)根函數(shù)y=f(x)的圖象與x軸有公共點.對于函數(shù)y=f(x),使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點
2025-04-21 19:07
【總結】第三章函數(shù)的應用§函數(shù)與方程3.方程的根與函數(shù)的零點課時目標元二次方程根的存在性及根的個數(shù),理解二次函數(shù)的圖象與x軸的交點和相應的一元二次方程根的關系.念以及函數(shù)零點與方程根的聯(lián)系..1.函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點和相應的ax2+bx+c=0(a≠0)
【總結】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導數(shù)研究函數(shù)的零點或方程的根[典例](2022·山東高考)(13分)設函數(shù)+c(e=28…是自然對數(shù)的底數(shù),c∈R).
2025-08-05 03:43
【總結】函數(shù)的零點問題函數(shù)零點是新課標教材的新增內容之一,縱觀近幾年全國各地的高考試題,經(jīng)常出現(xiàn)一些與零點有關的問題,它可以以選擇題、填空題的形式出現(xiàn),也可以在解答題中與其它知識交匯后閃亮登場,可以說”零點”成為了高考新的熱點、亮點和生長點.高考地位方程0)(?xf方程的實數(shù)根與
2024-11-22 01:56
【總結】方程的根與函數(shù)的零點一、選擇題1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應值表x1234567f(x)136.13615.552-210.88-88-6411.238由表可知函數(shù)f(x)存在零點的區(qū)間有(
【總結】函數(shù)的零點畫出函數(shù)圖像,指出x取哪些值時,y=0?y0?y0?2y=x-2x-3xoy-13(1)再求方程的實數(shù)根,觀察函數(shù)與方程的聯(lián)系?2x-2x-3=0我們把使二次函數(shù)
2024-11-03 17:56
【總結】和函數(shù)的零點XYAMBO10m(1,40/3)(0,10)?思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?方程x2-2x+1=0x2-
2025-03-12 14:48