【總結(jié)】高三數(shù)學(xué)函數(shù)的圖像、零點(diǎn)一:選擇題f(x)=x2﹣2x+b在區(qū)間(2,4)內(nèi)有唯一零點(diǎn),則b的取值范圍是( D?。〢、RB、(﹣∞,0)C、(﹣8,+∞)D、(﹣8,0),用二分法求方程在(1,3)內(nèi)近似解的過程中,f(1)>0,f()<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間( A?。〢、(1,)B、(,2)C、
2025-03-24 12:17
【總結(jié)】第二課時(shí)方程的根與函數(shù)的零點(diǎn)(習(xí)題課)方程的根與函數(shù)的零點(diǎn)知識回顧?y=f(x)有零點(diǎn)有哪些等價(jià)說法?函數(shù)y=f(x)有零點(diǎn)方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有公共點(diǎn).對于函數(shù)y=f(x),使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)
2025-11-15 16:55
【總結(jié)】函數(shù)與方程方程的根與函數(shù)的零點(diǎn)(1)思考??一元二次方程ax2+bx+c=0(a?0)的根與二次函數(shù)y=ax2+bx+c(a?0)的圖象有什么關(guān)系??先來觀察幾個(gè)具體的一元二次方程及其相應(yīng)的二次函數(shù),如:–x2-2x-3=0與y=x2-2x-3–x2-2x+1=0與y=x2-2x+1–x
2025-11-08 18:06
【總結(jié)】學(xué)習(xí)內(nèi)容:【課程學(xué)習(xí)目標(biāo)】1.知識與技能:(1)了解函數(shù)零點(diǎn)的概念:能夠結(jié)合具體方程說明方程的根、函數(shù)的零點(diǎn)、函數(shù)圖象與x軸的交點(diǎn)三者的關(guān)系;(2)理解函數(shù)零點(diǎn)存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數(shù)存在零點(diǎn)的一個(gè)充分條件;了解函數(shù)零點(diǎn)可能不止一個(gè);矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。(3)能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點(diǎn)個(gè)數(shù),及所在區(qū)間.
2025-06-23 21:17
【總結(jié)】《方程的根與函數(shù)的零點(diǎn)》教學(xué)設(shè)計(jì)及教學(xué)反思一、背景分析1、學(xué)習(xí)任務(wù)分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是初等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。?原因是要用函數(shù)的觀點(diǎn)統(tǒng)帥中學(xué)數(shù)學(xué),,解方程的問題就變成了求函數(shù)的零點(diǎn)問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由
2025-04-19 05:40
【總結(jié)】函數(shù)的零點(diǎn)問題函數(shù)零點(diǎn)是新課標(biāo)教材的新增內(nèi)容之一,縱觀近幾年全國各地的高考試題,經(jīng)常出現(xiàn)一些與零點(diǎn)有關(guān)的問題,它可以以選擇題、填空題的形式出現(xiàn),也可以在解答題中與其它知識交匯后閃亮登場,可以說”零點(diǎn)”成為了高考新的熱點(diǎn)、亮點(diǎn)和生長點(diǎn).高考地位方程0)(?xf方程的實(shí)數(shù)根與
2025-11-13 01:56
【總結(jié)】利用導(dǎo)數(shù)研究方程的根函數(shù)與x軸即方程根的個(gè)數(shù)問題解題步驟第一步:畫出兩個(gè)圖像即“穿線圖”(即解導(dǎo)數(shù)不等式)和“趨勢圖”即三次函數(shù)的大致趨勢“是先增后減再增”還是“先減后增再減”;第二步:由趨勢圖結(jié)合交點(diǎn)個(gè)數(shù)或根的個(gè)數(shù)寫不等式(組);主要看極大值和極小值與0的關(guān)系;第三步:解不等式(組)即可;1、已知函數(shù).(Ⅰ)求f(x)的反函數(shù)的圖象上圖象上點(diǎn)(1,0)處的切線方
2025-03-25 00:40
【總結(jié)】函數(shù)零點(diǎn)問題【教學(xué)目標(biāo)】知識與技能:1.理解函數(shù)零點(diǎn)的定義以及函數(shù)的零點(diǎn)與方程的根之間的聯(lián)系,掌握用連續(xù)函數(shù)零點(diǎn)定理及函數(shù)圖像判斷函數(shù)零點(diǎn)所在的區(qū)間與方程的根所在的區(qū)間.2.結(jié)合幾類基本初
2025-03-24 12:18
【總結(jié)】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個(gè)根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-03-24 06:28
【總結(jié)】10函數(shù)零點(diǎn)的個(gè)數(shù)問題一、知識點(diǎn)講解與分析:1、零點(diǎn)的定義:一般地,對于函數(shù),我們把方程的實(shí)數(shù)根稱為函數(shù)的零點(diǎn)2、函數(shù)零點(diǎn)存在性定理:設(shè)函數(shù)在閉區(qū)間上連續(xù),且,那么在開區(qū)間內(nèi)至少有函數(shù)的一個(gè)零點(diǎn),即至少有一點(diǎn),使得。(1)在上連續(xù)是使用零點(diǎn)存在性定理判定零點(diǎn)的前提(2)零點(diǎn)存在性定理中的幾個(gè)“不一定”(假設(shè)連續(xù))①若,則的零點(diǎn)不一定只有一個(gè),可以有多個(gè)②若,
2025-03-24 04:05
【總結(jié)】函數(shù)零點(diǎn)的定義理解 函數(shù)的零點(diǎn)是函數(shù)圖象的一個(gè)重要的特征,同時(shí)也溝通了函數(shù)、方程、不等式以及算法等內(nèi)容,在分析解題思路、探求解題方法中起著重要的作用,因此要重視對函數(shù)零點(diǎn)的學(xué)習(xí).下面就函數(shù)的零點(diǎn)判定中的幾個(gè)誤區(qū)進(jìn)行剖析,希望對大家有所幫助.1.因"望文生義"而致誤 例1.函數(shù)的零點(diǎn)是 ?。ā 。。粒 。拢 。茫 。模保插e(cuò)解:C錯(cuò)解剖析:錯(cuò)誤的原
2025-06-18 23:35
【總結(jié)】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點(diǎn)5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-16 22:23
【總結(jié)】函數(shù)的零點(diǎn)畫出函數(shù)圖像,指出x取哪些值時(shí),y=0?y0?y0?2y=x-2x-3xoy-13(1)再求方程的實(shí)數(shù)根,觀察函數(shù)與方程的聯(lián)系?2x-2x-3=0我們把使二次函數(shù)
2025-10-25 17:56
【總結(jié)】函數(shù)的零點(diǎn)高考要求內(nèi)容要求層次重、難點(diǎn)函數(shù)的零點(diǎn)函數(shù)的零點(diǎn)B1.理解函數(shù)零點(diǎn)的概念2.掌握函數(shù)零點(diǎn)的性質(zhì)3.明確零點(diǎn)是一個(gè)“值”,而非一個(gè)點(diǎn)的坐標(biāo)4.會利用函數(shù)的零點(diǎn)探索二次方程根的分布問題二分法A了解二分法的原理知識框架重難點(diǎn)一、函數(shù)的零點(diǎn)1.零點(diǎn)的概念:對于函數(shù)y=f(
2025-06-16 04:02
【總結(jié)】總體內(nèi)容展示:1、教材及地位分析2、學(xué)情分析3、教學(xué)目標(biāo)分析4、教法分析5、教學(xué)過程展示6、教學(xué)總結(jié)與反思教材地位:必修一第三章“函數(shù)與方程”是高中數(shù)學(xué)的新增內(nèi)容,是近年來高考關(guān)注的熱點(diǎn).本章函數(shù)與方程是中學(xué)數(shù)學(xué)的核
2025-08-01 18:01