【總結(jié)】學(xué)習(xí)內(nèi)容:【課程學(xué)習(xí)目標(biāo)】1.知識與技能:(1)了解函數(shù)零點的概念:能夠結(jié)合具體方程說明方程的根、函數(shù)的零點、函數(shù)圖象與x軸的交點三者的關(guān)系;(2)理解函數(shù)零點存在性定理:了解圖象連續(xù)不斷的意義及作用;知道定理只是函數(shù)存在零點的一個充分條件;了解函數(shù)零點可能不止一個;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。(3)能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點個數(shù),及所在區(qū)間.
2025-06-23 21:17
【總結(jié)】《方程的根與函數(shù)的零點》教學(xué)設(shè)計及教學(xué)反思一、背景分析1、學(xué)習(xí)任務(wù)分析函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是初等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。?原因是要用函數(shù)的觀點統(tǒng)帥中學(xué)數(shù)學(xué),,解方程的問題就變成了求函數(shù)的零點問題.就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由
2025-04-19 05:40
【總結(jié)】方程的根和函數(shù)的零點XYAMBO10m(1,40/3)(0,10)?思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0
2025-11-10 13:12
【總結(jié)】函數(shù)與方程一、考點聚焦1.函數(shù)零點的概念對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點,注意以下幾點:(1)函數(shù)的零點是一個實數(shù),當(dāng)函數(shù)的自變量取這個實數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點也就是函數(shù)的圖象與x軸的交點的橫坐標(biāo)。(3)一般我們只討論函數(shù)的實數(shù)零點。(4)求零點就是求方程的實數(shù)根。2、函數(shù)零點的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-16 02:09
【總結(jié)】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點,證明:線段與曲線存在異于、的公共點;5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-16 22:23
【總結(jié)】利用導(dǎo)數(shù)研究方程的根和函數(shù)的零點總結(jié):?方程的根?方程的根1.設(shè)為實數(shù),函數(shù),當(dāng)什么范圍內(nèi)取值時,曲線與軸僅有一個交點。2、已知函數(shù)f(x)=-x+8x,g(x)=6lnx+m(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點?若
2025-04-16 23:50
【總結(jié)】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導(dǎo)數(shù)研究函數(shù)的零點或方程的根[典例](2022·山東高考)(13分)設(shè)函數(shù)+c(e=28…是自然對數(shù)的底數(shù),c∈R).
2025-08-05 03:43
【總結(jié)】2022/8/201人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》必修12022/8/202閱讀課本第84頁章引言,了解本章我們將要學(xué)習(xí)的內(nèi)容2022/8/2030322???xx062ln???xx(2)問題求解下列方程(1)?是否有根?有幾個根?如何求根?探究
2025-08-01 17:57
【總結(jié)】函數(shù)的零點問題函數(shù)零點是新課標(biāo)教材的新增內(nèi)容之一,縱觀近幾年全國各地的高考試題,經(jīng)常出現(xiàn)一些與零點有關(guān)的問題,它可以以選擇題、填空題的形式出現(xiàn),也可以在解答題中與其它知識交匯后閃亮登場,可以說”零點”成為了高考新的熱點、亮點和生長點.高考地位方程0)(?xf方程的實數(shù)根與
2025-11-13 01:56
【總結(jié)】【引例】解方程023??x(1)0652???xx(2)062ln???xx(3)32??x3,221??xx一次、二次方程,很容易求解,對于三次、四次方程,在16世紀(jì),數(shù)學(xué)家也找到了一般的根式解法,但直到19世紀(jì),阿貝爾、伽羅瓦等數(shù)學(xué)家才發(fā)現(xiàn),其實高于四次以及含有指數(shù)對數(shù)形式的方程,沒
2025-11-08 05:40
【總結(jié)】函數(shù)的零點畫出函數(shù)圖像,指出x取哪些值時,y=0?y0?y0?2y=x-2x-3xoy-13(1)再求方程的實數(shù)根,觀察函數(shù)與方程的聯(lián)系?2x-2x-3=0我們把使二次函數(shù)
2025-10-25 17:56
【總結(jié)】函數(shù)零點問題一、基礎(chǔ)知識回顧1.函數(shù)零點概念對函數(shù),把使的實數(shù)叫做函數(shù)的零點.同時我們還要知道函數(shù)零點、方程的根和函數(shù)圖像的關(guān)系:函數(shù)有零點方程有實數(shù)根
2025-03-24 12:18
【總結(jié)】函數(shù)的零點【教學(xué)目標(biāo)】1、了解函數(shù)零點的概念及函數(shù)零點的等價描述;2、能利用二次函數(shù)的圖象與判別式的符號,判斷一元二次方程根的存在性及根的個數(shù);3、理解判斷函數(shù)零點存在性的結(jié)論并能研究簡單的函數(shù)零點的存在性問題;4、體現(xiàn)、感受并理解方程和函數(shù)圖象在零點問題中的應(yīng)用,滲透數(shù)形結(jié)合思想,運用數(shù)形結(jié)合來研究和解決數(shù)學(xué)問題,并能應(yīng)用從特殊到一般的數(shù)學(xué)方法去探索和認(rèn)識數(shù)學(xué)知識。
2025-04-16 23:40
【總結(jié)】第二課時方程的根與函數(shù)的零點(習(xí)題課)方程的根與函數(shù)的零點知識回顧?y=f(x)有零點有哪些等價說法?函數(shù)y=f(x)有零點方程f(x)=0有實數(shù)根函數(shù)y=f(x)的圖象與x軸有公共點.對于函數(shù)y=f(x),使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點
2025-04-21 19:07
【總結(jié)】方程的根與函數(shù)的零點班級:__________姓名:__________設(shè)計人__________日期__________課后練習(xí)【基礎(chǔ)過關(guān)】1.在區(qū)間上有零點的一個函數(shù)為A.B.C.D.2.方程的解所在的區(qū)間為A.B.C.D.3.函數(shù)的零點所在的大致區(qū)間是A.B.C.
2024-12-08 22:40