【總結】精銳教育學科教師輔導講義學員編號:年級:高二課時數(shù):學員姓名:張欣蕾輔導科目:數(shù)學學科教師:李欣授課類型T導數(shù)與函數(shù)極值與最值CT
2025-05-16 08:26
【總結】【高考地位】導數(shù)在研究函數(shù)的極值與最值問題是高考的必考的重點內(nèi)容,已由解決函數(shù)、數(shù)列、不等式問題的輔助工具上升為解決問題的必不可少的工具,特別是利用導數(shù)來解決函數(shù)的極值與最值、零點的個數(shù)等問題,在高考中以各種題型中均出現(xiàn),對于導數(shù)問題中求參數(shù)的取值范圍是近幾年高考中出現(xiàn)頻率較高的一類問題,其試題難度考查較大.【方法點評】類型一利用導數(shù)研究函數(shù)的極值使用情景:一般函數(shù)類型
2025-03-25 23:06
【總結】函數(shù)的極值和最值【考綱要求】。.?!局R網(wǎng)絡】函數(shù)極值的定義函數(shù)極值點條件函數(shù)的極值求函數(shù)極值函數(shù)的極值和最值函數(shù)在閉區(qū)間上的最大值和最小值【考點梳理】要點一、函數(shù)的極值函數(shù)的極值的定義一般地,設函數(shù)在點及其附近有定義,(1)若對于附近的所有點,都有,則是函數(shù)的一個極大值,記作;(2)若對附近的所有
2025-06-16 04:08
【總結】課題:導數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學教學對象:高三課時第1課時提供者:段秀香單位:靜海第六中學一、教學內(nèi)容分析 現(xiàn)在中學數(shù)學新教材中,導數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學知識的一個重要交匯點,是聯(lián)系多個章節(jié)內(nèi)容以及解決相關問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結】導數(shù)經(jīng)典例題剖析考點一:求導公式。例1.是的導函數(shù),則的值是??键c二:導數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。??键c三:導數(shù)的幾何意義的應用。:,直線,且直線與曲線C相切于點,求直線的方程及切點坐標??键c四:函數(shù)的單調(diào)性。,求的取值范圍。
2025-08-08 18:24
【總結】專題一第5講 導數(shù)及其應用一、選擇題(每小題4分,共24分)1.已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)=A.-e B.-1C.1 D.e解析 f′(x)=2f′(1)+,令x=1,得f′(1)=2f′(1)+1,∴f′(1)=-.答案 B2.(2012·泉州
2025-08-05 17:15
【總結】1§函數(shù)的極值與導數(shù)學習目標、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預習與反饋(預習教材P26~P31,找出疑惑之處)復習1:設函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為函
2024-11-20 03:14
【總結】《導數(shù)在研究函數(shù)中的應用-極值》教學目標?(1)知識目標:能探索并應用函數(shù)的極值與導數(shù)的關系求函數(shù)極值,能由導數(shù)信息判斷函數(shù)極值的情況。?(2)能力目標:培養(yǎng)學生的觀察能力、歸納能力,增強數(shù)形結合的思維意識。?(3)情感目標:通過在教學過程中讓學生多動手、多觀察、勤思考、善總結,引導學生養(yǎng)成自主學習的良好習慣。?教學
2024-11-18 12:15
2024-11-18 12:13
【總結】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關系,并會靈活應用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側異號)。二:課前預習1.函數(shù)a
2024-11-20 00:30
【總結】專題8:導數(shù)(文)經(jīng)典例題剖析考點一:求導公式。例1.是的導函數(shù),則的值是。解析:,所以答案:3考點二:導數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。解析:因為,所以,由切線過點,可得點M的縱坐標為,所以,所以答案:3。解析:,點處切線的斜
2025-04-04 05:08
【總結】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【總結】2013屆高三數(shù)學一輪鞏固與練習----導數(shù)及其應用1.設正弦函數(shù)y=sinx在x=0和x=附近的平均變化率為k1,k2,則k1,k2的大小關系為( )A.k1k2B.k1k2C.k1=k2D.不確定解析:選A.∵y=sinx,∴y′=(sinx)′=cosx,k1=cos0=1,
2025-08-05 19:26
【總結】最大值與最小值教學目的:⒈使學生理解函數(shù)的最大值和最小值的概念,掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最小)值必有的充分條件;⒉使學生掌握用導數(shù)求函數(shù)的極值及最值的方法和步驟教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法.教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-20 00:26